Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-03-06 DOI:10.1038/s41377-024-01735-4
Dehong Yang, Jiawei Lai, Zipu Fan, Shiyu Wang, Kainan Chang, Lili Meng, Jinluo Cheng, Dong Sun
{"title":"Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene","authors":"Dehong Yang, Jiawei Lai, Zipu Fan, Shiyu Wang, Kainan Chang, Lili Meng, Jinluo Cheng, Dong Sun","doi":"10.1038/s41377-024-01735-4","DOIUrl":null,"url":null,"abstract":"<p>Recent conceptual demonstrations of direct photocurrent readout of light vortices have enabled the development of light orbital angular momentum-sensitive focal plane arrays and on-chip integration of orbital angular momentum detection. However, known orbital angular momentum-sensitive materials are limited to two topological Weyl Semimetals belonging to the <i>C</i><sub><i>2v</i></sub> point group, namely, WTe<sub>2</sub> and TaIrTe<sub>4</sub>. Both are fragile under ambient conditions and challenging for large-scale epitaxial growth. In this work, we demonstrate that multilayer graphene, which is complementary metal–oxide–semiconductor compatible and epitaxially growable at the wafer scale, is applicable for orbital angular momentum detection in the mid-infrared region. Using a multilayer graphene photodetector with a designed U-shaped electrode geometry, we demonstrate that the topological charge of orbital angular momentum can be detected directly through the orbital photogalvanic effect and that the orbital angular momentum recognition capability of multilayer graphene is an order of magnitude greater than that of TaIrTe<sub>4</sub>. We found that the detection capability of multilayer graphene is enabled by the enhanced orbital photogalvanic effect response due to the reduced dimensionality and scattering rate. Our work opens a new technical route to improve orbital angular momentum recognition capability and is immediately applicable for large-scale integration of ambient stable, mid-infrared direct orbital angular momentum photodetection devices.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"53 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01735-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent conceptual demonstrations of direct photocurrent readout of light vortices have enabled the development of light orbital angular momentum-sensitive focal plane arrays and on-chip integration of orbital angular momentum detection. However, known orbital angular momentum-sensitive materials are limited to two topological Weyl Semimetals belonging to the C2v point group, namely, WTe2 and TaIrTe4. Both are fragile under ambient conditions and challenging for large-scale epitaxial growth. In this work, we demonstrate that multilayer graphene, which is complementary metal–oxide–semiconductor compatible and epitaxially growable at the wafer scale, is applicable for orbital angular momentum detection in the mid-infrared region. Using a multilayer graphene photodetector with a designed U-shaped electrode geometry, we demonstrate that the topological charge of orbital angular momentum can be detected directly through the orbital photogalvanic effect and that the orbital angular momentum recognition capability of multilayer graphene is an order of magnitude greater than that of TaIrTe4. We found that the detection capability of multilayer graphene is enabled by the enhanced orbital photogalvanic effect response due to the reduced dimensionality and scattering rate. Our work opens a new technical route to improve orbital angular momentum recognition capability and is immediately applicable for large-scale integration of ambient stable, mid-infrared direct orbital angular momentum photodetection devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Relay-projection microscopic telescopy Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene Ultrafast pump-probe phase-randomized tomography Controlling the wavefront aberration of a large-aperture and high-precision holographic diffraction grating Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1