Oscar Iván Monsalve Camacho, Gerrit Hoogenboom, Andrea Onelia Rodríguez-Roa, Oscar Gonzalo Castillo-Romero
{"title":"Estimating the Future With the Sustainability Assessment Methodology to Soil-Associated Agricultural Experiments","authors":"Oscar Iván Monsalve Camacho, Gerrit Hoogenboom, Andrea Onelia Rodríguez-Roa, Oscar Gonzalo Castillo-Romero","doi":"10.1002/ldr.5551","DOIUrl":null,"url":null,"abstract":"Agricultural sustainability assessments have gained high importance during the last decades. Different tools have been developed for these assessments, such as the Sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES). SMAES quantifies the current sustainability of the different treatments evaluated in experiments associated with the soil. However, efforts aimed at maintaining or increasing crop systems sustainability must be planned and measured in the short, medium, and long term. In this work, crop modelling parameters are added to SMAES to estimate future sustainability. The first is the construction of climate scenarios (RCP 4.5 and 8.5, model CCSM4, periods 2050–2100) to establish the conditions of change in the future. Second, crop yield is modelled with Decision Support System for Agrotechnology Transfer (DSSAT) using the aforementioned climate scenarios. Third, yield modelling results and SMAES sustainability indexes (IS) from climate scenarios are integrated. As a case study, the current sustainability (IS-C) of five potato fertilization split treatments was initially estimated: (i) Commercial control (Control), (ii) Fertilization recommended by Agrosavia (As), (iii) Monthly split fertilization recommended by Agrosavia (AsSplit), (iv) AsSplit decreasing the amount of fertilizer by 25% (AsSp25), and (v) AsSplit decreasing the amount of fertilizer by 50% (AsSp50). AsSp50 generated the highest current and future sustainability with IS-C = 0.90, IS-45, and IS-85 = 0.88. Results suggest that SMAES allows sustainability assessments under current and future scenarios, leveraging modelling tools like DSSAT and LCA. This study demonstrated its feasibility for scenario-based evaluations, highlighting its potential to support sustainable agricultural practices.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"36 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5551","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural sustainability assessments have gained high importance during the last decades. Different tools have been developed for these assessments, such as the Sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES). SMAES quantifies the current sustainability of the different treatments evaluated in experiments associated with the soil. However, efforts aimed at maintaining or increasing crop systems sustainability must be planned and measured in the short, medium, and long term. In this work, crop modelling parameters are added to SMAES to estimate future sustainability. The first is the construction of climate scenarios (RCP 4.5 and 8.5, model CCSM4, periods 2050–2100) to establish the conditions of change in the future. Second, crop yield is modelled with Decision Support System for Agrotechnology Transfer (DSSAT) using the aforementioned climate scenarios. Third, yield modelling results and SMAES sustainability indexes (IS) from climate scenarios are integrated. As a case study, the current sustainability (IS-C) of five potato fertilization split treatments was initially estimated: (i) Commercial control (Control), (ii) Fertilization recommended by Agrosavia (As), (iii) Monthly split fertilization recommended by Agrosavia (AsSplit), (iv) AsSplit decreasing the amount of fertilizer by 25% (AsSp25), and (v) AsSplit decreasing the amount of fertilizer by 50% (AsSp50). AsSp50 generated the highest current and future sustainability with IS-C = 0.90, IS-45, and IS-85 = 0.88. Results suggest that SMAES allows sustainability assessments under current and future scenarios, leveraging modelling tools like DSSAT and LCA. This study demonstrated its feasibility for scenario-based evaluations, highlighting its potential to support sustainable agricultural practices.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.