Unveiling the Hidden Mechanism: How LuxS/AI-2 quorum sensing system drives antimicrobial resistance in Salmonella pullorum through activation of the efflux pump AcrAB-TolC
Ziheng Xu , Can Wang , Min Wang , Jingzhen Liang , Changcheng Li , Wenyan Chen , Ping Wei
{"title":"Unveiling the Hidden Mechanism: How LuxS/AI-2 quorum sensing system drives antimicrobial resistance in Salmonella pullorum through activation of the efflux pump AcrAB-TolC","authors":"Ziheng Xu , Can Wang , Min Wang , Jingzhen Liang , Changcheng Li , Wenyan Chen , Ping Wei","doi":"10.1016/j.psj.2025.104972","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the antimicrobial resistance (AMR) mechanism of <em>Salmonella pullorum</em> (SP), which is widespread among yellow chickens in China, is crucial for reducing significant economic losses in the industry. In this study, we explored the AMR mechanism by which the LuxS/AI-2-mediated quorum sensing (QS) system regulates the AcrAB-TolC efflux pump in the SP. The results showed that the <em>luxS</em> gene and the signaling molecule AI-2 had no effect on the growth of the SP strains. However, the <em>luxS</em> gene knockout strain (SP129∆<em>luxS</em>) was sensitive to antimicrobials (ampicillin, methoxypyrimidine, sulfaisoxazole, trimethoprim/sulfamethoxazole and nalidixic acid), whereas SP129 was resistant. The SP129 strain was resistant to antimicrobials which had previously been proved to be sensitive to the antimicrobials following incubation with AI-2. Moreover, the expression levels of the <em>soxS, acrA</em>, and <em>acrB</em> genes, as well as the SoxS protein were significantly increased by knocking out the <em>luxS</em> gene or by incubating with Al-2. Crucially, there was no interaction between the LuxS protein and the SoxS or SoxR proteins. However, these two proteins were found to be bound to AI-2 via hydrogen bonds. In summary, AMR in SP isolates was enhanced by AI-2 through the promotion of the the expression of the <em>soxS</em> gene and the SoxS protein, activating the efflux pump. Exploring the AMR mechanism of the SP strain provides important baseline information for controlling outbreaks of yellow chicken salmonellosis.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 4","pages":"Article 104972"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125002111","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the antimicrobial resistance (AMR) mechanism of Salmonella pullorum (SP), which is widespread among yellow chickens in China, is crucial for reducing significant economic losses in the industry. In this study, we explored the AMR mechanism by which the LuxS/AI-2-mediated quorum sensing (QS) system regulates the AcrAB-TolC efflux pump in the SP. The results showed that the luxS gene and the signaling molecule AI-2 had no effect on the growth of the SP strains. However, the luxS gene knockout strain (SP129∆luxS) was sensitive to antimicrobials (ampicillin, methoxypyrimidine, sulfaisoxazole, trimethoprim/sulfamethoxazole and nalidixic acid), whereas SP129 was resistant. The SP129 strain was resistant to antimicrobials which had previously been proved to be sensitive to the antimicrobials following incubation with AI-2. Moreover, the expression levels of the soxS, acrA, and acrB genes, as well as the SoxS protein were significantly increased by knocking out the luxS gene or by incubating with Al-2. Crucially, there was no interaction between the LuxS protein and the SoxS or SoxR proteins. However, these two proteins were found to be bound to AI-2 via hydrogen bonds. In summary, AMR in SP isolates was enhanced by AI-2 through the promotion of the the expression of the soxS gene and the SoxS protein, activating the efflux pump. Exploring the AMR mechanism of the SP strain provides important baseline information for controlling outbreaks of yellow chicken salmonellosis.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.