SuperDecode: an integrated toolkit for analyzing mutations induced by genome editing.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2025-03-04 DOI:10.1016/j.molp.2025.03.002
Fuquan Li, Xiyu Tan, Shengting Li, Shaotong Chen, Lin Liu, Jingjing Huang, Gufeng Li, Zijun Lu, Jingwen Wu, Dongchang Zeng, Yanqiu Luo, Xiaoou Dong, Xingliang Ma, Qinlong Zhu, Letian Chen, Yao-Guang Liu, Chengjie Chen, Xianrong Xie
{"title":"SuperDecode: an integrated toolkit for analyzing mutations induced by genome editing.","authors":"Fuquan Li, Xiyu Tan, Shengting Li, Shaotong Chen, Lin Liu, Jingjing Huang, Gufeng Li, Zijun Lu, Jingwen Wu, Dongchang Zeng, Yanqiu Luo, Xiaoou Dong, Xingliang Ma, Qinlong Zhu, Letian Chen, Yao-Guang Liu, Chengjie Chen, Xianrong Xie","doi":"10.1016/j.molp.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing using CRISPR/Cas or other systems has become a cornerstone of numerous biological and applied research fields. However, detecting the resulting mutations by analysis of sequencing data remains time-consuming and inefficient. In response to this issue, we designed SuperDecode, an integrated software toolkit for analyzing editing outcomes using a range of sequencing strategies. SuperDecode comprises three modules, DSDecodeMS, HiDecode, and LaDecode, each designed to automatically decode mutations from Sanger, high-throughput short-read (next-generation sequencing), and long-read sequencing data (third-generation sequencing), respectively, from targeted PCR amplicons. By leveraging specific strategies for constructing sequencing libraries of pooled multiple amplicons, HiDecode and LaDecode facilitate large-scale identification of mutations induced by single or multiplex target-site editing in a cost-effective manner. We demonstrate the efficacy of SuperDecode by analyzing mutations produced using different genome editing tools (CRISPR/Cas, base editing, prime editing) in different materials (diploid and tetraploid rice, protoplasts), underscoring its versatility in decoding genome editing outcomes across different applications. Furthermore, this toolkit can be used to analyze other genetic variations, as exemplified by its ability to estimate the C-to-U editing rate of the cellular RNA of a mitochondrial gene. SuperDecode offers both a standalone software package and a web-based version, ensuring its easy access and broad compatibility across diverse computer systems. Thus, SuperDecode provides a comprehensive platform for analyzing a wide array of mutations, advancing the utility of genome editing for scientific research and genetic engineering.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.03.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome editing using CRISPR/Cas or other systems has become a cornerstone of numerous biological and applied research fields. However, detecting the resulting mutations by analysis of sequencing data remains time-consuming and inefficient. In response to this issue, we designed SuperDecode, an integrated software toolkit for analyzing editing outcomes using a range of sequencing strategies. SuperDecode comprises three modules, DSDecodeMS, HiDecode, and LaDecode, each designed to automatically decode mutations from Sanger, high-throughput short-read (next-generation sequencing), and long-read sequencing data (third-generation sequencing), respectively, from targeted PCR amplicons. By leveraging specific strategies for constructing sequencing libraries of pooled multiple amplicons, HiDecode and LaDecode facilitate large-scale identification of mutations induced by single or multiplex target-site editing in a cost-effective manner. We demonstrate the efficacy of SuperDecode by analyzing mutations produced using different genome editing tools (CRISPR/Cas, base editing, prime editing) in different materials (diploid and tetraploid rice, protoplasts), underscoring its versatility in decoding genome editing outcomes across different applications. Furthermore, this toolkit can be used to analyze other genetic variations, as exemplified by its ability to estimate the C-to-U editing rate of the cellular RNA of a mitochondrial gene. SuperDecode offers both a standalone software package and a web-based version, ensuring its easy access and broad compatibility across diverse computer systems. Thus, SuperDecode provides a comprehensive platform for analyzing a wide array of mutations, advancing the utility of genome editing for scientific research and genetic engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
Sensing H2O2 for defense in plants. SuperDecode: an integrated toolkit for analyzing mutations induced by genome editing. The near-complete genome assembly of pickling cucumber and its mutation library illuminate cucumber functional genomics and genetic improvement. Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid. The plant retromer components SNXs bind to ATG8 and CLASP to mediate autophagosome movement along microtubules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1