Emissions and stability characteristics of syngas combustion with swirl and non-swirl micromix configurations

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2025-03-06 DOI:10.1016/j.energy.2025.135497
Mengshi Chen , Yijun Zhao , Linyao Zhang , Chenglong Wang , Chang Xing , Penghua Qiu , Shaozeng Sun
{"title":"Emissions and stability characteristics of syngas combustion with swirl and non-swirl micromix configurations","authors":"Mengshi Chen ,&nbsp;Yijun Zhao ,&nbsp;Linyao Zhang ,&nbsp;Chenglong Wang ,&nbsp;Chang Xing ,&nbsp;Penghua Qiu ,&nbsp;Shaozeng Sun","doi":"10.1016/j.energy.2025.135497","DOIUrl":null,"url":null,"abstract":"<div><div>In traditional combustion technologies, swirl and bluff bodies effectively control flame emissions and stability. However, their impact on micromix combustion technology that suitable for hydrogen-containing fuels remains unclear. Two micromix configurations with swirl and non-swirl flow fields have been proposed in our research group. Through experimental and numerical simulation efforts, the emissions and stability characteristics have been compared in a wide range of operating conditions for the two proposed designs. The results indicate that swirl and non-swirl configurations exhibit similar and broad operating conditions for reaching low CO emissions while swirl flames show a broader low NO<sub>x</sub> emissions range. Below equivalence ratio of 0.4, the NO<sub>x</sub> emissions for the swirl and non-swirl configurations were less than 3 ppm and 10 ppm, respectively. Within the equivalence ratio range of 0.3–0.8, CO emissions for both configurations were below 10 ppm. The high-temperature regions of the non-swirl flame exhibit a concentrated radial distribution and longer residence time, therefore resulting in higher NO<sub>x</sub> formation. While the uniform temperature distribution in swirl flames lowers its NO<sub>x</sub> formation and enhances flame stability. A NO<sub>x</sub> response model has also been proposed for the swirl configuration to further promote its usage. NO<sub>x</sub> emissions increase with the residence time and temperature, becoming highly sensitive after exceeding 20 ppm. Considering both stability and emissions, swirl flames are appropriate for main-stage nozzles, while non-swirl flames are suitable for pilot-stage nozzles.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"321 ","pages":"Article 135497"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225011399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In traditional combustion technologies, swirl and bluff bodies effectively control flame emissions and stability. However, their impact on micromix combustion technology that suitable for hydrogen-containing fuels remains unclear. Two micromix configurations with swirl and non-swirl flow fields have been proposed in our research group. Through experimental and numerical simulation efforts, the emissions and stability characteristics have been compared in a wide range of operating conditions for the two proposed designs. The results indicate that swirl and non-swirl configurations exhibit similar and broad operating conditions for reaching low CO emissions while swirl flames show a broader low NOx emissions range. Below equivalence ratio of 0.4, the NOx emissions for the swirl and non-swirl configurations were less than 3 ppm and 10 ppm, respectively. Within the equivalence ratio range of 0.3–0.8, CO emissions for both configurations were below 10 ppm. The high-temperature regions of the non-swirl flame exhibit a concentrated radial distribution and longer residence time, therefore resulting in higher NOx formation. While the uniform temperature distribution in swirl flames lowers its NOx formation and enhances flame stability. A NOx response model has also been proposed for the swirl configuration to further promote its usage. NOx emissions increase with the residence time and temperature, becoming highly sensitive after exceeding 20 ppm. Considering both stability and emissions, swirl flames are appropriate for main-stage nozzles, while non-swirl flames are suitable for pilot-stage nozzles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
A new method for the preparation of biomass-based solid fuels: Pyrolysis-impregnation-cobaking Low carbon consumption and cleaner aromatics production integrated coke oven gas: Process design and benefit analysis Impact of dissociated methanol gas direct injection strategy on performance of port-injection methanol engines under dilution combustion condition Novel sealing design for high-speed coolant pumps: Impact on energy performance, axial thrust and flow field Emissions and stability characteristics of syngas combustion with swirl and non-swirl micromix configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1