Kaiyu Liu , Tao Qian , Wang Zhang , Shaohui Wu , Rushuai Han , Kai Hou , Zaijun Wu , Qinran Hu
{"title":"Review on small-signal stability of multiple virtual synchronous generators","authors":"Kaiyu Liu , Tao Qian , Wang Zhang , Shaohui Wu , Rushuai Han , Kai Hou , Zaijun Wu , Qinran Hu","doi":"10.1016/j.rser.2025.115543","DOIUrl":null,"url":null,"abstract":"<div><div>The extensive incorporation of renewable energy sources into the power grid has resulted in a loss of system inertia due to power electronic devices that lack physical inertia, which presents difficulties for frequency stability. Furthermore, the high degree of uncertainty surrounding renewable energy production can significantly affect the power system’s small-signal stability. Virtual synchronous generator (VSG) can emulate the operational characteristics of traditional synchronous generators (SG), providing inertia support to ensure stable system operation. However, the extensive parallel integration of VSGs into the grid introduces new instability factors. This paper focuses on the small-signal stability issues of parallel VSGs. First, small-signal models of the single-machine and multi-machine VSG are established, analyzing its stability issues from a mathematical perspective. Second, the paper details the primary analysis methods for small-signal stability, which are divided into two categories: the state-space method and the impedance modeling method. Third, the paper examines the factors that affect small-signal stability of VSG. Next, several methods to enhance the small-signal stability are reviewed. Finally, the prospects of VSG’s small-signal stability are discussed.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"215 ","pages":"Article 115543"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125002163","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The extensive incorporation of renewable energy sources into the power grid has resulted in a loss of system inertia due to power electronic devices that lack physical inertia, which presents difficulties for frequency stability. Furthermore, the high degree of uncertainty surrounding renewable energy production can significantly affect the power system’s small-signal stability. Virtual synchronous generator (VSG) can emulate the operational characteristics of traditional synchronous generators (SG), providing inertia support to ensure stable system operation. However, the extensive parallel integration of VSGs into the grid introduces new instability factors. This paper focuses on the small-signal stability issues of parallel VSGs. First, small-signal models of the single-machine and multi-machine VSG are established, analyzing its stability issues from a mathematical perspective. Second, the paper details the primary analysis methods for small-signal stability, which are divided into two categories: the state-space method and the impedance modeling method. Third, the paper examines the factors that affect small-signal stability of VSG. Next, several methods to enhance the small-signal stability are reviewed. Finally, the prospects of VSG’s small-signal stability are discussed.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.