{"title":"Precise engineering of gene expression by editing plasticity","authors":"Yang Qiu, Lifen Liu, Jiali Yan, Xianglei Xiang, Shouzhe Wang, Yun Luo, Kaixuan Deng, Jieting Xu, Minliang Jin, Xiaoyu Wu, Liwei Cheng, Ying Zhou, Weibo Xie, Hai-Jun Liu, Alisdair R. Fernie, Xuehai Hu, Jianbing Yan","doi":"10.1186/s13059-025-03516-7","DOIUrl":null,"url":null,"abstract":"Identifying transcriptional cis-regulatory elements (CREs) and understanding their role in gene expression are essential for the precise manipulation of gene expression and associated phenotypes. This knowledge is fundamental for advancing genetic engineering and improving crop traits. We here demonstrate that CREs can be accurately predicted and utilized to precisely regulate gene expression beyond the range of natural variation. We firstly build two sequence-to-expression deep learning models to respectively identify distal and proximal CREs by combining them with interpretability methods in multiple crops. A large number of distal CREs are verified for enhancer activity in vitro using UMI-STARR-seq on 12,000 synthesized sequences. These comprehensively characterized CREs and their precisely predicted effects further contribute to the design of in silico editing schemes for precise engineering of gene expression. We introduce a novel concept of “editingplasticity” to evaluate the potential of promoter editing to alter expression of each gene. As a proof of concept, both exhaustive prediction and random knockout mutants are analyzed within the promoter region of ZmVTE4, a key gene affecting α-tocopherol content in maize. A high degree of agreement between predicted and observed expression is observed, extending the range of natural variation and thereby allowing the creation of an optimal phenotype. Our study provides a robust computational framework that advances knowledge-guided gene editing for precise regulation of gene expression and crop improvement. By reliably predicting and validating CREs, we offer a tool for targeted genetic modifications, enhancing desirable traits in crops.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"33 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03516-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying transcriptional cis-regulatory elements (CREs) and understanding their role in gene expression are essential for the precise manipulation of gene expression and associated phenotypes. This knowledge is fundamental for advancing genetic engineering and improving crop traits. We here demonstrate that CREs can be accurately predicted and utilized to precisely regulate gene expression beyond the range of natural variation. We firstly build two sequence-to-expression deep learning models to respectively identify distal and proximal CREs by combining them with interpretability methods in multiple crops. A large number of distal CREs are verified for enhancer activity in vitro using UMI-STARR-seq on 12,000 synthesized sequences. These comprehensively characterized CREs and their precisely predicted effects further contribute to the design of in silico editing schemes for precise engineering of gene expression. We introduce a novel concept of “editingplasticity” to evaluate the potential of promoter editing to alter expression of each gene. As a proof of concept, both exhaustive prediction and random knockout mutants are analyzed within the promoter region of ZmVTE4, a key gene affecting α-tocopherol content in maize. A high degree of agreement between predicted and observed expression is observed, extending the range of natural variation and thereby allowing the creation of an optimal phenotype. Our study provides a robust computational framework that advances knowledge-guided gene editing for precise regulation of gene expression and crop improvement. By reliably predicting and validating CREs, we offer a tool for targeted genetic modifications, enhancing desirable traits in crops.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.