Junming Guan, Tammy Tan, Seyed Moeen Nehzati, Michael Bennett, Patrick Turley, Daniel J. Benjamin, Alexander Strudwick Young
{"title":"Family-based genome-wide association study designs for increased power and robustness","authors":"Junming Guan, Tammy Tan, Seyed Moeen Nehzati, Michael Bennett, Patrick Turley, Daniel J. Benjamin, Alexander Strudwick Young","doi":"10.1038/s41588-025-02118-0","DOIUrl":null,"url":null,"abstract":"<p>Family-based genome-wide association studies (FGWASs) use random, within-family genetic variation to remove confounding from estimates of direct genetic effects (DGEs). Here we introduce a ‘unified estimator’ that includes individuals without genotyped relatives, unifying standard and FGWAS while increasing power for DGE estimation. We also introduce a ‘robust estimator’ that is not biased in structured and/or admixed populations. In an analysis of 19 phenotypes in the UK Biobank, the unified estimator in the White British subsample and the robust estimator (applied without ancestry restrictions) increased the effective sample size for DGEs by 46.9% to 106.5% and 10.3% to 21.0%, respectively, compared to using genetic differences between siblings. Polygenic predictors derived from the unified estimator demonstrated superior out-of-sample prediction ability compared to other family-based methods. We implemented the methods in the software package snipar in an efficient linear mixed model that accounts for sample relatedness and sibling shared environment.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"1 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02118-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Family-based genome-wide association studies (FGWASs) use random, within-family genetic variation to remove confounding from estimates of direct genetic effects (DGEs). Here we introduce a ‘unified estimator’ that includes individuals without genotyped relatives, unifying standard and FGWAS while increasing power for DGE estimation. We also introduce a ‘robust estimator’ that is not biased in structured and/or admixed populations. In an analysis of 19 phenotypes in the UK Biobank, the unified estimator in the White British subsample and the robust estimator (applied without ancestry restrictions) increased the effective sample size for DGEs by 46.9% to 106.5% and 10.3% to 21.0%, respectively, compared to using genetic differences between siblings. Polygenic predictors derived from the unified estimator demonstrated superior out-of-sample prediction ability compared to other family-based methods. We implemented the methods in the software package snipar in an efficient linear mixed model that accounts for sample relatedness and sibling shared environment.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution