{"title":"Mitochondrial genetics, signalling and stress responses","authors":"Yasmine J. Liu, Jonathan Sulc, Johan Auwerx","doi":"10.1038/s41556-025-01625-w","DOIUrl":null,"url":null,"abstract":"<p>Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"212 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01625-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology