FedIMPUTE: Privacy-preserving missing value imputation for multi-site heterogeneous electronic health records

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Biomedical Informatics Pub Date : 2025-03-05 DOI:10.1016/j.jbi.2025.104780
Siqi Li , Mengying Yan , Ruizhi Yuan , Molei Liu , Nan Liu , Chuan Hong
{"title":"FedIMPUTE: Privacy-preserving missing value imputation for multi-site heterogeneous electronic health records","authors":"Siqi Li ,&nbsp;Mengying Yan ,&nbsp;Ruizhi Yuan ,&nbsp;Molei Liu ,&nbsp;Nan Liu ,&nbsp;Chuan Hong","doi":"10.1016/j.jbi.2025.104780","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives:</h3><div>We propose FedIMPUTE, a communication-efficient federated learning (FL) based approach for missing value imputation (MVI). Our method enables multiple sites to collaboratively perform MVI in a privacy-preserving manner, addressing challenges of data-sharing constraints and population heterogeneity.</div></div><div><h3>Methods:</h3><div>We begin by conducting MVI locally at each participating site, followed by the application of various FL strategies, ranging from basic to advanced, to federate local MVI models without sharing site-specific data. The federated model is then broadcast and used by each site for MVI. We evaluate FedIMPUTE using both simulation studies and a real-world application on electronic health records (EHRs) to predict emergency department (ED) outcomes as a proof of concept.</div></div><div><h3>Results:</h3><div>Simulation studies show that FedIMPUTE outperforms all baseline MVI methods under comparison, improving downstream prediction performance and effectively handling data heterogeneity across sites. By using ED datasets from three hospitals within the Duke University Health System (DUHS), FedIMPUTE achieves the lowest mean squared error (MSE) among benchmark MVI methods, indicating superior imputation accuracy. Additionally, FedIMPUTE provides good downstream prediction performance, outperforming or matching other benchmark methods.</div></div><div><h3>Conclusion:</h3><div>FedIMPUTE enhances the performance of downstream risk prediction tasks, particularly for sites with high missing data rates and small sample sizes. It is easy to implement and communication-efficient, requiring sites to share only non-patient-level summary statistics.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"165 ","pages":"Article 104780"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000097","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives:

We propose FedIMPUTE, a communication-efficient federated learning (FL) based approach for missing value imputation (MVI). Our method enables multiple sites to collaboratively perform MVI in a privacy-preserving manner, addressing challenges of data-sharing constraints and population heterogeneity.

Methods:

We begin by conducting MVI locally at each participating site, followed by the application of various FL strategies, ranging from basic to advanced, to federate local MVI models without sharing site-specific data. The federated model is then broadcast and used by each site for MVI. We evaluate FedIMPUTE using both simulation studies and a real-world application on electronic health records (EHRs) to predict emergency department (ED) outcomes as a proof of concept.

Results:

Simulation studies show that FedIMPUTE outperforms all baseline MVI methods under comparison, improving downstream prediction performance and effectively handling data heterogeneity across sites. By using ED datasets from three hospitals within the Duke University Health System (DUHS), FedIMPUTE achieves the lowest mean squared error (MSE) among benchmark MVI methods, indicating superior imputation accuracy. Additionally, FedIMPUTE provides good downstream prediction performance, outperforming or matching other benchmark methods.

Conclusion:

FedIMPUTE enhances the performance of downstream risk prediction tasks, particularly for sites with high missing data rates and small sample sizes. It is easy to implement and communication-efficient, requiring sites to share only non-patient-level summary statistics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
期刊最新文献
A novel data-driven approach for Personas validation in healthcare using self-supervised machine learning. Tentative renderings: Describing local data infrastructures that support the implementation and evaluation of national evaluation Initiatives. MedicalGLM: A Pediatric Medical Question Answering Model with a quality evaluation mechanism FedIMPUTE: Privacy-preserving missing value imputation for multi-site heterogeneous electronic health records Enhancing generalization of medical image segmentation via game theory-based domain selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1