Emanuele Tauro, Alessandra Gorini, Grzegorz Bilo, Enrico Gianluca Caiani
{"title":"A novel data-driven approach for Personas validation in healthcare using self-supervised machine learning.","authors":"Emanuele Tauro, Alessandra Gorini, Grzegorz Bilo, Enrico Gianluca Caiani","doi":"10.1016/j.jbi.2025.104815","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Persona validation is a challenging task, often relying on costly external validation methods. The aim of this study was the development of a novel method for Personas validation based on data already available during their creation.</p><p><strong>Methods: </strong>A novel approach based on self-supervised machine learning (SSML) was proposed. A training-test split was performed (80 %-20 %), with the training set used for Personas development. The obtained labels were used as input for a 5-fold cross-validation grid search, resulting in 5 optimal different models. The \"weak\" ground truth for the test set was determined using the trained clustering model, and was compared with the prediction obtained by the majority voting of the optimal models. Performance evaluation was conducted by means of weighted accuracy, precision, recall and F1 score.</p><p><strong>Results: </strong>The proposed method was evaluated on two very different healthcare datasets composed by questionnaires. The former was presented 1070 subjects, resulting in three unbalanced Personas (P0 n = 100; P1 n = 292; P2 n = 464). The latter included 176 subjects with three slightly unbalanced Personas. (P0 n = 58; P1 n = 32; P2 n = 50). The SSML approach resulted capable of correctly differentiating the clusters with high values of weighted accuracy (88.27 % and 94.12 %), precision (87.11 % and 92.83 %), recall (86.92 % and 91.67 %), and F1 score (86.92 % and 91.76 %).</p><p><strong>Conclusions: </strong>The proposed method showed high capabilities in generalization beyond the training data, validating the Personas' capability of stratifying the characteristics of target populations. Additionally, this method significantly reduced the costs to validate Personas when compared to other methods in current literature.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104815"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2025.104815","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Persona validation is a challenging task, often relying on costly external validation methods. The aim of this study was the development of a novel method for Personas validation based on data already available during their creation.
Methods: A novel approach based on self-supervised machine learning (SSML) was proposed. A training-test split was performed (80 %-20 %), with the training set used for Personas development. The obtained labels were used as input for a 5-fold cross-validation grid search, resulting in 5 optimal different models. The "weak" ground truth for the test set was determined using the trained clustering model, and was compared with the prediction obtained by the majority voting of the optimal models. Performance evaluation was conducted by means of weighted accuracy, precision, recall and F1 score.
Results: The proposed method was evaluated on two very different healthcare datasets composed by questionnaires. The former was presented 1070 subjects, resulting in three unbalanced Personas (P0 n = 100; P1 n = 292; P2 n = 464). The latter included 176 subjects with three slightly unbalanced Personas. (P0 n = 58; P1 n = 32; P2 n = 50). The SSML approach resulted capable of correctly differentiating the clusters with high values of weighted accuracy (88.27 % and 94.12 %), precision (87.11 % and 92.83 %), recall (86.92 % and 91.67 %), and F1 score (86.92 % and 91.76 %).
Conclusions: The proposed method showed high capabilities in generalization beyond the training data, validating the Personas' capability of stratifying the characteristics of target populations. Additionally, this method significantly reduced the costs to validate Personas when compared to other methods in current literature.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.