A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan.

IF 17 Q1 CELL BIOLOGY Nature aging Pub Date : 2025-03-07 DOI:10.1038/s43587-025-00830-4
Lorna Jayne, Aurora Lavin-Peter, Julian Roessler, Alexander Tyshkovskiy, Mateusz Antoszewski, Erika Ren, Aleksandar Markovski, Senmiao Sun, Hanqi Yao, Vijay G Sankaran, Vadim N Gladyshev, Robert T Brooke, Steve Horvath, Eric C Griffith, Sinisa Hrvatin
{"title":"A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan.","authors":"Lorna Jayne, Aurora Lavin-Peter, Julian Roessler, Alexander Tyshkovskiy, Mateusz Antoszewski, Erika Ren, Aleksandar Markovski, Senmiao Sun, Hanqi Yao, Vijay G Sankaran, Vadim N Gladyshev, Robert T Brooke, Steve Horvath, Eric C Griffith, Sinisa Hrvatin","doi":"10.1038/s43587-025-00830-4","DOIUrl":null,"url":null,"abstract":"<p><p>Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase healthspan, remain unknown. Here we demonstrate that the activity of a spatially defined neuronal population in the preoptic area, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor-like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves healthspan. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (T<sub>b</sub>) on blood epigenetic aging and find that the decelerating effect of TLSs on aging is mediated by decreased T<sub>b</sub>. Taken together, our findings provide novel mechanistic insight into the decelerating effects of torpor and hibernation on aging and support the growing body of evidence that T<sub>b</sub> is an important mediator of the aging processes.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":17.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00830-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase healthspan, remain unknown. Here we demonstrate that the activity of a spatially defined neuronal population in the preoptic area, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor-like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves healthspan. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the decelerating effect of TLSs on aging is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the decelerating effects of torpor and hibernation on aging and support the growing body of evidence that Tb is an important mediator of the aging processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
期刊最新文献
A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. Accelerating the promise of geroscience through The Academy of Health & Lifespan Research. Cold is hot for slowing aging. Mitochondria-enriched hematopoietic stem cells exhibit elevated self-renewal capabilities, thriving within the context of aged bone marrow. Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1