{"title":"Regulating Crystallization for Pure-Iodide 1.68 eV Bandgap Perovskite Solar Cells with a Fill Factor over 86%","authors":"Xiangqing Zhou, Xingliang Li, Biao Shi, Pengyang Wang, Xiaona Du, Ying Zhao, Xiaodan Zhang","doi":"10.1021/acsnano.4c18395","DOIUrl":null,"url":null,"abstract":"Mixed halide wide-bandgap (WBG) perovskites, widely used as a top-cell absorber in tandem solar cells, exhibit severe photoinduced halide phase segregation. A feasible solution is to exploit pure-iodide WBG perovskites, essentially increasing Cs content instead of Br to achieve bandgap widening. However, the efficiency of pure-iodine WBG perovskite solar cells (PSCs) reported so far has been inferior to that of the typical mixed halide WBG PSCs due to complex nucleation and phase transition processes, leading to poor crystallization quality and a high density of defect states in pure-iodine WBG perovskites. Here, by combining lead thiocyanate (Pb(SCN)<sub>2</sub>) and oleylamine hydrochloride (OAmCl) with the Cs<sub>0.3</sub>DMA<sub>0.2</sub>MA<sub>0.5</sub>PbI<sub>3</sub> perovskite precursor, a homogeneous phase distribution is obtained, resulting in enhanced crystallization and a reduction of excess lead source defects. With this approach, the resulting film quality is improved along with fewer surface-bulk defects as well as beneficial surface electronic properties. As a result, the pure-iodide WBG PSCs deliver a high efficiency of 21.55%, an extremely high fill factor of 86.03%, and superior photostability. The target film is fundamentally free of phase segregation under continuous light for 12 h (AM 1.5 G illumination, xenon lamp, 1 sun).","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18395","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed halide wide-bandgap (WBG) perovskites, widely used as a top-cell absorber in tandem solar cells, exhibit severe photoinduced halide phase segregation. A feasible solution is to exploit pure-iodide WBG perovskites, essentially increasing Cs content instead of Br to achieve bandgap widening. However, the efficiency of pure-iodine WBG perovskite solar cells (PSCs) reported so far has been inferior to that of the typical mixed halide WBG PSCs due to complex nucleation and phase transition processes, leading to poor crystallization quality and a high density of defect states in pure-iodine WBG perovskites. Here, by combining lead thiocyanate (Pb(SCN)2) and oleylamine hydrochloride (OAmCl) with the Cs0.3DMA0.2MA0.5PbI3 perovskite precursor, a homogeneous phase distribution is obtained, resulting in enhanced crystallization and a reduction of excess lead source defects. With this approach, the resulting film quality is improved along with fewer surface-bulk defects as well as beneficial surface electronic properties. As a result, the pure-iodide WBG PSCs deliver a high efficiency of 21.55%, an extremely high fill factor of 86.03%, and superior photostability. The target film is fundamentally free of phase segregation under continuous light for 12 h (AM 1.5 G illumination, xenon lamp, 1 sun).
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.