{"title":"Growth temperature-induced interfacial degradation in superconducting NbN/insulator HfO2 bilayers","authors":"F. Verón Lagger , M. Sirena , N. Haberkorn","doi":"10.1016/j.nxmate.2025.100581","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports on the electrical transport properties of NbN/HfO<sub>2</sub> bilayers grown sequentially by reactive sputtering on <em>c</em>-Al<sub>2</sub>O<sub>3</sub> substrates. An epitaxial (111) NbN layer, 10 nm thick, was deposited at 450 °C using an N<sub>2</sub>/argon mixture. Subsequently, an HfO<sub>2</sub> layer with a nominal thickness of 10 nm was grown using a reactive O<sub>2</sub>/argon mixture at deposition temperatures ranging from room temperature to 450 °C. The crystalline structure was analyzed using X-ray diffraction. The electrical transport properties of the insulator layer were characterized by conductive atomic force microscopy at room temperature, while the superconducting properties of NbN were evaluated using a standard four-point configuration. Results indicate that increasing the deposition temperature of HfO<sub>2</sub> causes chemical degradation and reduces the nominal thicknesses of both NbN and HfO<sub>2</sub> layers due to interfacial reactions and Nb oxidation. This degradation adversely affects the electrical properties of the superconducting layers, specifically leading to a decrease in the superconducting critical temperature of NbN and an increase in the insulating properties of the HfO<sub>2</sub> layer. The modifications in the properties of HfO<sub>2</sub> are attributed not only to interfacial degradation but also to a probable reduction in structural disorder with increasing deposition temperature. Overall, these findings contribute to understanding the impact of interface disorder on electronic devices incorporating nitride and oxide layers.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100581"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports on the electrical transport properties of NbN/HfO2 bilayers grown sequentially by reactive sputtering on c-Al2O3 substrates. An epitaxial (111) NbN layer, 10 nm thick, was deposited at 450 °C using an N2/argon mixture. Subsequently, an HfO2 layer with a nominal thickness of 10 nm was grown using a reactive O2/argon mixture at deposition temperatures ranging from room temperature to 450 °C. The crystalline structure was analyzed using X-ray diffraction. The electrical transport properties of the insulator layer were characterized by conductive atomic force microscopy at room temperature, while the superconducting properties of NbN were evaluated using a standard four-point configuration. Results indicate that increasing the deposition temperature of HfO2 causes chemical degradation and reduces the nominal thicknesses of both NbN and HfO2 layers due to interfacial reactions and Nb oxidation. This degradation adversely affects the electrical properties of the superconducting layers, specifically leading to a decrease in the superconducting critical temperature of NbN and an increase in the insulating properties of the HfO2 layer. The modifications in the properties of HfO2 are attributed not only to interfacial degradation but also to a probable reduction in structural disorder with increasing deposition temperature. Overall, these findings contribute to understanding the impact of interface disorder on electronic devices incorporating nitride and oxide layers.