{"title":"GCCNet: A Novel Network Leveraging Gated Cross-Correlation for Multi-View Classification","authors":"Yuanpeng Zeng;Ru Zhang;Hao Zhang;Shaojie Qiao;Faliang Huang;Qing Tian;Yuzhong Peng","doi":"10.1109/TMM.2024.3521733","DOIUrl":null,"url":null,"abstract":"Multi-view learning is a machine learning paradigm that utilizes multiple feature sets or data sources to improve learning performance and generalization. However, existing multi-view learning methods often do not capture and utilize information from different views very well, especially when the relationships between views are complex and of varying quality. In this paper, we propose a novel multi-view learning framework for the multi-view classification task, called Gated Cross-Correlation Network (GCCNet), which addresses these challenges by integrating the three key operational levels in multi-view learning: representation, fusion, and decision. Specifically, GCCNet contains a novel component called the Multi-View Gated Information Distributor (MVGID) to enhance noise filtering and optimize the retention of critical information. In addition, GCCNet uses cross-correlation analysis to reveal dependencies and interactions between different views, as well as integrates an adaptive weighted joint decision strategy to mitigate the interference of low-quality views. Thus, GCCNet can not only comprehensively capture and utilize information from different views, but also facilitate information exchange and synergy between views, ultimately improving the overall performance of the model. Extensive experimental results on ten benchmark datasets show GCCNet's outperforms state-of-the-art methods on eight out of ten datasets, validating its effectiveness and superiority in multi-view learning.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1086-1099"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814649/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-view learning is a machine learning paradigm that utilizes multiple feature sets or data sources to improve learning performance and generalization. However, existing multi-view learning methods often do not capture and utilize information from different views very well, especially when the relationships between views are complex and of varying quality. In this paper, we propose a novel multi-view learning framework for the multi-view classification task, called Gated Cross-Correlation Network (GCCNet), which addresses these challenges by integrating the three key operational levels in multi-view learning: representation, fusion, and decision. Specifically, GCCNet contains a novel component called the Multi-View Gated Information Distributor (MVGID) to enhance noise filtering and optimize the retention of critical information. In addition, GCCNet uses cross-correlation analysis to reveal dependencies and interactions between different views, as well as integrates an adaptive weighted joint decision strategy to mitigate the interference of low-quality views. Thus, GCCNet can not only comprehensively capture and utilize information from different views, but also facilitate information exchange and synergy between views, ultimately improving the overall performance of the model. Extensive experimental results on ten benchmark datasets show GCCNet's outperforms state-of-the-art methods on eight out of ten datasets, validating its effectiveness and superiority in multi-view learning.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.