Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction.

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Visual Computing for Industry Biomedicine and Art Pub Date : 2025-03-10 DOI:10.1186/s42492-025-00186-x
Huong Hoang Luong, Phuc Phan Hong, Dat Vo Minh, Thinh Nguyen Le Quang, Anh Dinh The, Nguyen Thai-Nghe, Hai Thanh Nguyen
{"title":"Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction.","authors":"Huong Hoang Luong, Phuc Phan Hong, Dat Vo Minh, Thinh Nguyen Le Quang, Anh Dinh The, Nguyen Thai-Nghe, Hai Thanh Nguyen","doi":"10.1186/s42492-025-00186-x","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer, which is the most commonly diagnosed cancers among women, is a notable health issues globally. Breast cancer is a result of abnormal cells in the breast tissue growing out of control. Histopathology, which refers to the detection and learning of tissue diseases, has appeared as a solution for breast cancer treatment as it plays a vital role in its diagnosis and classification. Thus, considerable research on histopathology in medical and computer science has been conducted to develop an effective method for breast cancer treatment. In this study, a vision Transformer (ViT) was employed to classify tumors into two classes, benign and malignant, in the Breast Cancer Histopathological Database (BreakHis). To enhance the model performance, we introduced the novel multi-head locality large kernel self-attention during fine-tuning, achieving an accuracy of 95.94% at 100× magnification, thereby improving the accuracy by 3.34% compared to a standard ViT (which uses multi-head self-attention). In addition, the application of principal component analysis for dimensionality reduction led to an accuracy improvement of 3.34%, highlighting its role in mitigating overfitting and reducing the computational complexity. In the final phase, SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations, and Gradient-weighted Class Activation Mapping were used for the interpretability and explainability of machine-learning models, aiding in understanding the feature importance and local explanations, and visualizing the model attention. In another experiment, ensemble learning with VGGIN further boosted the performance to 97.13% accuracy. Our approach exhibited a 0.98% to 17.13% improvement in accuracy compared with state-of-the-art methods, establishing a new benchmark for breast cancer histopathological image classification.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"5"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00186-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer, which is the most commonly diagnosed cancers among women, is a notable health issues globally. Breast cancer is a result of abnormal cells in the breast tissue growing out of control. Histopathology, which refers to the detection and learning of tissue diseases, has appeared as a solution for breast cancer treatment as it plays a vital role in its diagnosis and classification. Thus, considerable research on histopathology in medical and computer science has been conducted to develop an effective method for breast cancer treatment. In this study, a vision Transformer (ViT) was employed to classify tumors into two classes, benign and malignant, in the Breast Cancer Histopathological Database (BreakHis). To enhance the model performance, we introduced the novel multi-head locality large kernel self-attention during fine-tuning, achieving an accuracy of 95.94% at 100× magnification, thereby improving the accuracy by 3.34% compared to a standard ViT (which uses multi-head self-attention). In addition, the application of principal component analysis for dimensionality reduction led to an accuracy improvement of 3.34%, highlighting its role in mitigating overfitting and reducing the computational complexity. In the final phase, SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations, and Gradient-weighted Class Activation Mapping were used for the interpretability and explainability of machine-learning models, aiding in understanding the feature importance and local explanations, and visualizing the model attention. In another experiment, ensemble learning with VGGIN further boosted the performance to 97.13% accuracy. Our approach exhibited a 0.98% to 17.13% improvement in accuracy compared with state-of-the-art methods, establishing a new benchmark for breast cancer histopathological image classification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction. Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior. Explainable machine learning framework for cataracts recognition using visual features. Harmonized technical standard test methods for quality evaluation of medical fluorescence endoscopic imaging systems. Advancing breast cancer diagnosis: token vision transformers for faster and accurate classification of histopathology images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1