Huong Hoang Luong, Phuc Phan Hong, Dat Vo Minh, Thinh Nguyen Le Quang, Anh Dinh The, Nguyen Thai-Nghe, Hai Thanh Nguyen
{"title":"Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction.","authors":"Huong Hoang Luong, Phuc Phan Hong, Dat Vo Minh, Thinh Nguyen Le Quang, Anh Dinh The, Nguyen Thai-Nghe, Hai Thanh Nguyen","doi":"10.1186/s42492-025-00186-x","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer, which is the most commonly diagnosed cancers among women, is a notable health issues globally. Breast cancer is a result of abnormal cells in the breast tissue growing out of control. Histopathology, which refers to the detection and learning of tissue diseases, has appeared as a solution for breast cancer treatment as it plays a vital role in its diagnosis and classification. Thus, considerable research on histopathology in medical and computer science has been conducted to develop an effective method for breast cancer treatment. In this study, a vision Transformer (ViT) was employed to classify tumors into two classes, benign and malignant, in the Breast Cancer Histopathological Database (BreakHis). To enhance the model performance, we introduced the novel multi-head locality large kernel self-attention during fine-tuning, achieving an accuracy of 95.94% at 100× magnification, thereby improving the accuracy by 3.34% compared to a standard ViT (which uses multi-head self-attention). In addition, the application of principal component analysis for dimensionality reduction led to an accuracy improvement of 3.34%, highlighting its role in mitigating overfitting and reducing the computational complexity. In the final phase, SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations, and Gradient-weighted Class Activation Mapping were used for the interpretability and explainability of machine-learning models, aiding in understanding the feature importance and local explanations, and visualizing the model attention. In another experiment, ensemble learning with VGGIN further boosted the performance to 97.13% accuracy. Our approach exhibited a 0.98% to 17.13% improvement in accuracy compared with state-of-the-art methods, establishing a new benchmark for breast cancer histopathological image classification.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"5"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00186-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer, which is the most commonly diagnosed cancers among women, is a notable health issues globally. Breast cancer is a result of abnormal cells in the breast tissue growing out of control. Histopathology, which refers to the detection and learning of tissue diseases, has appeared as a solution for breast cancer treatment as it plays a vital role in its diagnosis and classification. Thus, considerable research on histopathology in medical and computer science has been conducted to develop an effective method for breast cancer treatment. In this study, a vision Transformer (ViT) was employed to classify tumors into two classes, benign and malignant, in the Breast Cancer Histopathological Database (BreakHis). To enhance the model performance, we introduced the novel multi-head locality large kernel self-attention during fine-tuning, achieving an accuracy of 95.94% at 100× magnification, thereby improving the accuracy by 3.34% compared to a standard ViT (which uses multi-head self-attention). In addition, the application of principal component analysis for dimensionality reduction led to an accuracy improvement of 3.34%, highlighting its role in mitigating overfitting and reducing the computational complexity. In the final phase, SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations, and Gradient-weighted Class Activation Mapping were used for the interpretability and explainability of machine-learning models, aiding in understanding the feature importance and local explanations, and visualizing the model attention. In another experiment, ensemble learning with VGGIN further boosted the performance to 97.13% accuracy. Our approach exhibited a 0.98% to 17.13% improvement in accuracy compared with state-of-the-art methods, establishing a new benchmark for breast cancer histopathological image classification.