Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2025-03-11 DOI:10.1103/physrevlett.134.104003
Vatsal Sanjay, Detlef Lohse
{"title":"Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter","authors":"Vatsal Sanjay, Detlef Lohse","doi":"10.1103/physrevlett.134.104003","DOIUrl":null,"url":null,"abstract":"The dynamics of drop impact on a rigid surface strongly depends on the droplet’s velocity, its size, and its material properties. The main characteristics are the droplet’s force exerted on the surface and its maximal spreading radius. The crucial question is how do they depend on the (dimensionless) control parameters, which are the Weber number W</a:mi>e</a:mi></a:mrow></a:math> (nondimensionalized kinetic energy) and the Ohnesorge number <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>O</c:mi><c:mi>h</c:mi></c:mrow></c:math> (dimensionless viscosity). Here, we perform direct numerical simulations over the huge parameter range <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>1</e:mn><e:mo>≤</e:mo><e:mi>W</e:mi><e:mi>e</e:mi><e:mo>≤</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mn>3</e:mn></e:mrow></e:msup></e:mrow></e:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>3</g:mn></g:mrow></g:msup><g:mo>≤</g:mo><g:mi>O</g:mi><g:mi>h</g:mi><g:mo>≤</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>2</g:mn></g:mrow></g:msup></g:mrow></g:math> and in particular develop a unifying theoretical approach, which is inspired by the Grossmann-Lohse theory for wall-bounded turbulence [Grossmann and Lohse, ; ]. The key idea is to split the energy dissipation rate into the different phases of the impact process, in which different physical mechanisms dominate. The theory can consistently and quantitatively account for the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>W</i:mi><i:mi>e</i:mi></i:mrow></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mi>O</k:mi><k:mi>h</k:mi></k:mrow></k:math> dependences of the maximal impact force and the maximal spreading diameter over the huge parameter space. It also clarifies why viscous dissipation plays a significant role during impact, even for low-viscosity droplets (low <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>O</m:mi><m:mi>h</m:mi></m:math>), in contrast to what had been assumed in some prior theories. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"17 2 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.104003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of drop impact on a rigid surface strongly depends on the droplet’s velocity, its size, and its material properties. The main characteristics are the droplet’s force exerted on the surface and its maximal spreading radius. The crucial question is how do they depend on the (dimensionless) control parameters, which are the Weber number We (nondimensionalized kinetic energy) and the Ohnesorge number Oh (dimensionless viscosity). Here, we perform direct numerical simulations over the huge parameter range 1We103 and 103Oh102 and in particular develop a unifying theoretical approach, which is inspired by the Grossmann-Lohse theory for wall-bounded turbulence [Grossmann and Lohse, ; ]. The key idea is to split the energy dissipation rate into the different phases of the impact process, in which different physical mechanisms dominate. The theory can consistently and quantitatively account for the We and Oh dependences of the maximal impact force and the maximal spreading diameter over the huge parameter space. It also clarifies why viscous dissipation plays a significant role during impact, even for low-viscosity droplets (low Oh), in contrast to what had been assumed in some prior theories. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
Zero-Energy Photoelectric Effect Fermiology and Band Structure of Oxygen-Terminated Ti3C2Tx MXene Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter Black Hole Singularity Resolution in Unimodular Gravity from Unitarity Metadensity Functional Theory for Classical Fluids: Extracting the Pair Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1