Potential of using nature-based solutions to upgrade wastewater treatment plants in China and reduce carbon emissions: A comparative study of advanced treatment processes and constructed wetlands

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Resources Conservation and Recycling Pub Date : 2025-03-12 DOI:10.1016/j.resconrec.2025.108220
Yuanyu Cao , Peng Zhang , Mui-Choo Jong , Sike Wang , Gang Yan , Jiane Zuo , Wenjing Zhang
{"title":"Potential of using nature-based solutions to upgrade wastewater treatment plants in China and reduce carbon emissions: A comparative study of advanced treatment processes and constructed wetlands","authors":"Yuanyu Cao ,&nbsp;Peng Zhang ,&nbsp;Mui-Choo Jong ,&nbsp;Sike Wang ,&nbsp;Gang Yan ,&nbsp;Jiane Zuo ,&nbsp;Wenjing Zhang","doi":"10.1016/j.resconrec.2025.108220","DOIUrl":null,"url":null,"abstract":"<div><div>Constructed wetlands (CWs) offer a nature-based solution for upgrading wastewater treatment plants (WWTPs). However, the carbon reduction potential of CWs, compared to commonly used advanced treatment processes, remains unclear. In this study, we assess the greenhouse gas (GHG) emissions of six upgrading processes through life cycle assessment across 4,179 WWTPs in China. Results suggest that additional GHG emissions from WWTPs upgrading range from 0.14 to 0.43 kg of carbon dioxide equivalents (CO<sub>2</sub>eq) per cubic meter of treated wastewater. Vertical subsurface flow CWs could avoid GHG emissions by 33.8 % to 66.9 % compared to advanced treatment processes. However, surface flow and horizontal subsurface flow CWs do not exhibit carbon reduction potential in northern provinces. Energy consumption is identified to be the main contributor to GHG emissions in most processes. Our findings highlight the importance of optimizing energy structures and developing region-specific strategies to minimize GHG emissions during WWTP upgrading.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"218 ","pages":"Article 108220"},"PeriodicalIF":11.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344925000990","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Constructed wetlands (CWs) offer a nature-based solution for upgrading wastewater treatment plants (WWTPs). However, the carbon reduction potential of CWs, compared to commonly used advanced treatment processes, remains unclear. In this study, we assess the greenhouse gas (GHG) emissions of six upgrading processes through life cycle assessment across 4,179 WWTPs in China. Results suggest that additional GHG emissions from WWTPs upgrading range from 0.14 to 0.43 kg of carbon dioxide equivalents (CO2eq) per cubic meter of treated wastewater. Vertical subsurface flow CWs could avoid GHG emissions by 33.8 % to 66.9 % compared to advanced treatment processes. However, surface flow and horizontal subsurface flow CWs do not exhibit carbon reduction potential in northern provinces. Energy consumption is identified to be the main contributor to GHG emissions in most processes. Our findings highlight the importance of optimizing energy structures and developing region-specific strategies to minimize GHG emissions during WWTP upgrading.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
期刊最新文献
Critical raw materials for green transition: Key parameters and feasibility index for sufficiency Economic and environmental impact analysis of cellulose nanocrystal-reinforced cementitious mixture in 3D printing Stock, flow and reuse potential of precast concrete in Swedish residential buildings: Embodied carbon assessment Potential of using nature-based solutions to upgrade wastewater treatment plants in China and reduce carbon emissions: A comparative study of advanced treatment processes and constructed wetlands Empirical evaluation of reparability scoring systems for validity and reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1