{"title":"Quantitative Assessment of Carbon Reduction Potential in Regional Agricultural Systems Based on Bioenergy: A Case Study of Sichuan Province, China","authors":"Kailai Ji, Jian Pei, Wenfeng Huang","doi":"10.1007/s12155-025-10833-z","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, China's agricultural sector is undergoing a significant transition towards sustainable development, with increasing attention being paid to the environmental impacts of carbon emissions from agricultural production processes. In response to global climate change and growing energy demands, bioenergy has emerged as a potential solution; however, its specific impacts on regional agricultural systems require further clarification. This study employs a comprehensive data modeling approach to comparatively analyze the greenhouse gas emission reduction and energy conversion potentials of two prominent bioenergy technologies—anaerobic digestion and pyrolysis—within the context of agricultural biomass utilization. Furthermore, we conduct a life cycle assessment of bioenergy technology's carbon emission reduction benefits in Sichuan Province's agricultural production system. The key findings are as follows: (1) Both biomass energy conversion technologies demonstrate significant emission reduction capabilities, with anaerobic digestion technology showing a carbon reduction potential of 8.189 million tons, compared to pyrolysis technology's more substantial potential of 15.249 million tons. (2) The implementation of bioenergy technologies could potentially reduce carbon emissions by approximately 799,000 tons (-22%), 10.209 million tons (-37.0%), and 1.767 million tons (-100%) in the upstream, intermediate, and downstream sectors of Sichuan's agricultural system, respectively. (3) Under optimized scenarios involving enhanced agricultural residue utilization rates and improved technical efficiency, biomass energy could generate approximately 32.49 billion kWh of electricity for Sichuan Province, potentially surpassing wind and solar power to become the region's third-largest power generation source. This research provides quantitative insights into bioenergy's impacts on regional agricultural systems and evaluates the potential of agricultural biomass energy in Sichuan Province, offering valuable support for the development of regional sustainable agricultural strategies.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10833-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, China's agricultural sector is undergoing a significant transition towards sustainable development, with increasing attention being paid to the environmental impacts of carbon emissions from agricultural production processes. In response to global climate change and growing energy demands, bioenergy has emerged as a potential solution; however, its specific impacts on regional agricultural systems require further clarification. This study employs a comprehensive data modeling approach to comparatively analyze the greenhouse gas emission reduction and energy conversion potentials of two prominent bioenergy technologies—anaerobic digestion and pyrolysis—within the context of agricultural biomass utilization. Furthermore, we conduct a life cycle assessment of bioenergy technology's carbon emission reduction benefits in Sichuan Province's agricultural production system. The key findings are as follows: (1) Both biomass energy conversion technologies demonstrate significant emission reduction capabilities, with anaerobic digestion technology showing a carbon reduction potential of 8.189 million tons, compared to pyrolysis technology's more substantial potential of 15.249 million tons. (2) The implementation of bioenergy technologies could potentially reduce carbon emissions by approximately 799,000 tons (-22%), 10.209 million tons (-37.0%), and 1.767 million tons (-100%) in the upstream, intermediate, and downstream sectors of Sichuan's agricultural system, respectively. (3) Under optimized scenarios involving enhanced agricultural residue utilization rates and improved technical efficiency, biomass energy could generate approximately 32.49 billion kWh of electricity for Sichuan Province, potentially surpassing wind and solar power to become the region's third-largest power generation source. This research provides quantitative insights into bioenergy's impacts on regional agricultural systems and evaluates the potential of agricultural biomass energy in Sichuan Province, offering valuable support for the development of regional sustainable agricultural strategies.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.