Multilevel analysis of deformation and structure formation processes in powdered iron aluminide products obtained by different technological schemes of direct powder forging

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2025-03-13 DOI:10.1007/s12289-025-01888-6
Oleksandr Tolochyn, Stepan Kyryliuk, Gennadii Bagliuk, Yurii Podrezov, Oleksandra Tolochyna
{"title":"Multilevel analysis of deformation and structure formation processes in powdered iron aluminide products obtained by different technological schemes of direct powder forging","authors":"Oleksandr Tolochyn,&nbsp;Stepan Kyryliuk,&nbsp;Gennadii Bagliuk,&nbsp;Yurii Podrezov,&nbsp;Oleksandra Tolochyna","doi":"10.1007/s12289-025-01888-6","DOIUrl":null,"url":null,"abstract":"<div><p>A multilevel analysis of deformation and structure formation processes was carried out on powdered iron aluminide products obtained by different DPF technological schemes. At the macroscopic level, the analysis was carried out using rheological models of porous body compaction. The compaction curves are conventionally divided into three stages: at the first stage, the deformed volume decreases due to the deformation of the holder, at the second stage—due to the compaction of the porous workpiece, at the third stage—due to the plastic deformation of the dense workpiece realized due to the formation of a flake. When the compaction temperature and deformation pattern change, the staged compaction is maintained. At the meso level, the distribution of stresses and strains in the moulds and the kinetics of their changes during compaction were analysed by the finite element method. To predict the effect of structural changes on the complex of physical and mechanical properties, local processes of structure formation are analysed. It was established that the effect of porosity on electrical resistance and yield strength should be determined by the volume content of pores, consider planar pores, which are a characteristic feature of hot forging powder technology. During the strength analysis, special attention is paid to the areas around the triple joints, where defects of the maximum size are formed. The fracture toughness parameters and fracture pattern are sensitive to the presence of segregation clusters in the boundary region.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01888-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

A multilevel analysis of deformation and structure formation processes was carried out on powdered iron aluminide products obtained by different DPF technological schemes. At the macroscopic level, the analysis was carried out using rheological models of porous body compaction. The compaction curves are conventionally divided into three stages: at the first stage, the deformed volume decreases due to the deformation of the holder, at the second stage—due to the compaction of the porous workpiece, at the third stage—due to the plastic deformation of the dense workpiece realized due to the formation of a flake. When the compaction temperature and deformation pattern change, the staged compaction is maintained. At the meso level, the distribution of stresses and strains in the moulds and the kinetics of their changes during compaction were analysed by the finite element method. To predict the effect of structural changes on the complex of physical and mechanical properties, local processes of structure formation are analysed. It was established that the effect of porosity on electrical resistance and yield strength should be determined by the volume content of pores, consider planar pores, which are a characteristic feature of hot forging powder technology. During the strength analysis, special attention is paid to the areas around the triple joints, where defects of the maximum size are formed. The fracture toughness parameters and fracture pattern are sensitive to the presence of segregation clusters in the boundary region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
Optimization of die casting process and microstructure-mechanical properties of Al-Sc alloys Element evaporation and as-cast structures of a new Ni-Co-based Superalloy affected by the second smelting power of electron beam smelting layered solidification technology A press forming benchmark to isolate deformation mechanisms for simulation validation Cross-scale constitutive description and deformation mechanism in cutting nickel-based superalloy Inconel718 Multilevel analysis of deformation and structure formation processes in powdered iron aluminide products obtained by different technological schemes of direct powder forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1