Element evaporation and as-cast structures of a new Ni-Co-based Superalloy affected by the second smelting power of electron beam smelting layered solidification technology
Lin Yang, Rusheng Bai, Yi Tan, Ying Yang, Pengting Li
{"title":"Element evaporation and as-cast structures of a new Ni-Co-based Superalloy affected by the second smelting power of electron beam smelting layered solidification technology","authors":"Lin Yang, Rusheng Bai, Yi Tan, Ying Yang, Pengting Li","doi":"10.1007/s12289-025-01890-y","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with traditional smelting technology, the GH4068 alloy prepared by electron beam smelting layered solidification technology (EBS-LST) has a more uniform microstructure and lower microsegregation. To further optimize the as-cast microstructure of GH4068 alloy, the element volatilization, microstructure and microsegregation of GH4068 alloy prepared by EBS-LST of different second layer smelting powers were studied. The experimental results show that element volatilization gradually aggravates with the increase of smelting power, and the volatilization of Cr element is the most obvious. By analyzing the cross-sectional microstructures of ingots, it is found that the dendrite zone gradually reduces, while the cellular dendrite zone and cellular structure zone gradually increase with the increase of smelting power. The secondary dendrite arm spacing of ingots with the smelting power of 10 kW, 12 kW and 14 kW are 55.9 μm, 48.1 μm and 42.1 μm, respectively, which are all smaller than the ingot prepared by traditional duplex melting is 65.8 μm. The microsegregation of ingots in the dendrite zone is the most serious, and the size of precipitated phases in the cellular structure zone is the biggest. Therefore, considering the above experimental results, this paper believes that 12 kW is the better second layer smelting power.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01890-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with traditional smelting technology, the GH4068 alloy prepared by electron beam smelting layered solidification technology (EBS-LST) has a more uniform microstructure and lower microsegregation. To further optimize the as-cast microstructure of GH4068 alloy, the element volatilization, microstructure and microsegregation of GH4068 alloy prepared by EBS-LST of different second layer smelting powers were studied. The experimental results show that element volatilization gradually aggravates with the increase of smelting power, and the volatilization of Cr element is the most obvious. By analyzing the cross-sectional microstructures of ingots, it is found that the dendrite zone gradually reduces, while the cellular dendrite zone and cellular structure zone gradually increase with the increase of smelting power. The secondary dendrite arm spacing of ingots with the smelting power of 10 kW, 12 kW and 14 kW are 55.9 μm, 48.1 μm and 42.1 μm, respectively, which are all smaller than the ingot prepared by traditional duplex melting is 65.8 μm. The microsegregation of ingots in the dendrite zone is the most serious, and the size of precipitated phases in the cellular structure zone is the biggest. Therefore, considering the above experimental results, this paper believes that 12 kW is the better second layer smelting power.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.