Comprehensive Bioinformatics Analysis Reveals Molecular Signatures and Potential Caloric Restriction Mimetics with Neuroprotective Effects: Validation in an In Vitro Stroke Model
{"title":"Comprehensive Bioinformatics Analysis Reveals Molecular Signatures and Potential Caloric Restriction Mimetics with Neuroprotective Effects: Validation in an In Vitro Stroke Model","authors":"Navami Krishna, Neelakandan Annamalai Ramalakshmi, Rajanikant Golgodu Krishnamurthy","doi":"10.1007/s12031-025-02328-5","DOIUrl":null,"url":null,"abstract":"<div><p>Caloric restriction (CR) is a dietary intervention that reduces calorie intake without inducing malnutrition, demonstrating lifespan-extending effects in preclinical studies and some human trials, along with potential benefits in ameliorating age-related ailments. Caloric restriction mimetics (CRMs) are compounds mimicking CR effects, offering a potential therapeutic avenue for age-related diseases. This study explores the potential protective effects of CR on the brain neocortex (GSE11291) and the identification of CRMs using integrative bioinformatics and systems biology approaches. Our findings indicate that long-term CR activates cellular pathways improving mitochondrial function, enhancing antioxidant capacity, and reducing inflammation, potentially providing neuroprotection. The key signaling pathways enriched in our study include PPAR, mTOR, FoxO, AMPK, and Notch signaling pathways, which are crucial regulators of metabolism, cellular stress response, neuroprotection, and longevity. We identify key signaling molecules and molecular mechanisms associated with CR, including transcription factors, kinase regulators, and microRNAs linked to differentially expressed genes. Furthermore, potential CRMs such as rapamycin, replicating CR-related health benefits, are identified. Additionally, machine learning models were developed to classify small molecules based on their CNS activity and anti-inflammatory properties. As a proof of concept, we have demonstrated the ischemic neuroprotective effects of two top-ranked candidate reference molecules (CRMs) using the oxygen–glucose deprivation (OGD) model, an established in vitro stroke model. However, further investigations are essential to fully elucidate the therapeutic potential of these CRMs. In summary, our study suggests that long-term CR entails protective mechanisms preserving and safeguarding neuronal function, potentially impacting the treatment of age-related neurological diseases. Moreover, our findings contribute to the identification of potential genes and regulatory molecules involved in CR, along with potential CRMs, providing a promising foundation for future research in the field of neurological disorder treatment.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02328-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Caloric restriction (CR) is a dietary intervention that reduces calorie intake without inducing malnutrition, demonstrating lifespan-extending effects in preclinical studies and some human trials, along with potential benefits in ameliorating age-related ailments. Caloric restriction mimetics (CRMs) are compounds mimicking CR effects, offering a potential therapeutic avenue for age-related diseases. This study explores the potential protective effects of CR on the brain neocortex (GSE11291) and the identification of CRMs using integrative bioinformatics and systems biology approaches. Our findings indicate that long-term CR activates cellular pathways improving mitochondrial function, enhancing antioxidant capacity, and reducing inflammation, potentially providing neuroprotection. The key signaling pathways enriched in our study include PPAR, mTOR, FoxO, AMPK, and Notch signaling pathways, which are crucial regulators of metabolism, cellular stress response, neuroprotection, and longevity. We identify key signaling molecules and molecular mechanisms associated with CR, including transcription factors, kinase regulators, and microRNAs linked to differentially expressed genes. Furthermore, potential CRMs such as rapamycin, replicating CR-related health benefits, are identified. Additionally, machine learning models were developed to classify small molecules based on their CNS activity and anti-inflammatory properties. As a proof of concept, we have demonstrated the ischemic neuroprotective effects of two top-ranked candidate reference molecules (CRMs) using the oxygen–glucose deprivation (OGD) model, an established in vitro stroke model. However, further investigations are essential to fully elucidate the therapeutic potential of these CRMs. In summary, our study suggests that long-term CR entails protective mechanisms preserving and safeguarding neuronal function, potentially impacting the treatment of age-related neurological diseases. Moreover, our findings contribute to the identification of potential genes and regulatory molecules involved in CR, along with potential CRMs, providing a promising foundation for future research in the field of neurological disorder treatment.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.