Identifying Adverse Events in Outpatients With Prostate Cancer Using Pharmaceutical Care Records in Community Pharmacies: Application of Named Entity Recognition.
{"title":"Identifying Adverse Events in Outpatients With Prostate Cancer Using Pharmaceutical Care Records in Community Pharmacies: Application of Named Entity Recognition.","authors":"Yuki Yanagisawa, Satoshi Watabe, Sakura Yokoyama, Kyoko Sayama, Hayato Kizaki, Masami Tsuchiya, Shungo Imai, Mitsuhiro Someya, Ryoo Taniguchi, Shuntaro Yada, Eiji Aramaki, Satoko Hori","doi":"10.2196/69663","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Androgen receptor axis-targeting reagents (ARATs) have become key drugs for patients with castration-resistant prostate cancer (CRPC). ARATs are taken long term in outpatient settings, and effective adverse event (AE) monitoring can help prolong treatment duration for patients with CRPC. Despite the importance of monitoring, few studies have identified which AEs can be captured and assessed in community pharmacies, where pharmacists in Japan dispense medications, provide counseling, and monitor potential AEs for outpatients prescribed ARATs. Therefore, we anticipated that a named entity recognition (NER) system might be used to extract AEs recorded in pharmaceutical care records generated by community pharmacists.</p><p><strong>Objective: </strong>This study aimed to evaluate whether an NER system can effectively and systematically identify AEs in outpatients undergoing ARAT therapy by reviewing pharmaceutical care records generated by community pharmacists, focusing on assessment notes, which often contain detailed records of AEs. Additionally, the study sought to determine whether outpatient pharmacotherapy monitoring can be enhanced by using NER to systematically collect AEs from pharmaceutical care records.</p><p><strong>Methods: </strong>We used an NER system based on the widely used Japanese medical term extraction system MedNER-CR-JA, which uses Bidirectional Encoder Representations from Transformers (BERT). To evaluate its performance for pharmaceutical care records by community pharmacists, the NER system was first applied to 1008 assessment notes in records related to anticancer drug prescriptions. Three pharmaceutically proficient researchers compared the results with the annotated notes assigned symptom tags according to annotation guidelines and evaluated the performance of the NER system on the assessment notes in the pharmaceutical care records. The system was then applied to 2193 assessment notes for patients prescribed ARATs.</p><p><strong>Results: </strong>The F<sub>1</sub>-score for exact matches of all symptom tags between the NER system and annotators was 0.72, confirming the NER system has sufficient performance for application to pharmaceutical care records. The NER system automatically assigned 1900 symptom tags for the 2193 assessment notes from patients prescribed ARATs; 623 tags (32.8%) were positive symptom tags (symptoms present), while 1067 tags (56.2%) were negative symptom tags (symptoms absent). Positive symptom tags included ARAT-related AEs such as \"pain,\" \"skin disorders,\" \"fatigue,\" and \"gastrointestinal symptoms.\" Many other symptoms were classified as serious AEs. Furthermore, differences in symptom tag profiles reflecting pharmacists' AE monitoring were observed between androgen synthesis inhibition and androgen receptor signaling inhibition.</p><p><strong>Conclusions: </strong>The NER system successfully extracted AEs from pharmaceutical care records of patients prescribed ARATs, demonstrating its potential to systematically track the presence and absence of AEs in outpatients. Based on the analysis of a large volume of pharmaceutical medical records using the NER system, community pharmacists not only detect potential AEs but also actively monitor the absence of severe AEs, offering valuable insights for the continuous improvement of patient safety management.</p>","PeriodicalId":45538,"journal":{"name":"JMIR Cancer","volume":"11 ","pages":"e69663"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/69663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Androgen receptor axis-targeting reagents (ARATs) have become key drugs for patients with castration-resistant prostate cancer (CRPC). ARATs are taken long term in outpatient settings, and effective adverse event (AE) monitoring can help prolong treatment duration for patients with CRPC. Despite the importance of monitoring, few studies have identified which AEs can be captured and assessed in community pharmacies, where pharmacists in Japan dispense medications, provide counseling, and monitor potential AEs for outpatients prescribed ARATs. Therefore, we anticipated that a named entity recognition (NER) system might be used to extract AEs recorded in pharmaceutical care records generated by community pharmacists.
Objective: This study aimed to evaluate whether an NER system can effectively and systematically identify AEs in outpatients undergoing ARAT therapy by reviewing pharmaceutical care records generated by community pharmacists, focusing on assessment notes, which often contain detailed records of AEs. Additionally, the study sought to determine whether outpatient pharmacotherapy monitoring can be enhanced by using NER to systematically collect AEs from pharmaceutical care records.
Methods: We used an NER system based on the widely used Japanese medical term extraction system MedNER-CR-JA, which uses Bidirectional Encoder Representations from Transformers (BERT). To evaluate its performance for pharmaceutical care records by community pharmacists, the NER system was first applied to 1008 assessment notes in records related to anticancer drug prescriptions. Three pharmaceutically proficient researchers compared the results with the annotated notes assigned symptom tags according to annotation guidelines and evaluated the performance of the NER system on the assessment notes in the pharmaceutical care records. The system was then applied to 2193 assessment notes for patients prescribed ARATs.
Results: The F1-score for exact matches of all symptom tags between the NER system and annotators was 0.72, confirming the NER system has sufficient performance for application to pharmaceutical care records. The NER system automatically assigned 1900 symptom tags for the 2193 assessment notes from patients prescribed ARATs; 623 tags (32.8%) were positive symptom tags (symptoms present), while 1067 tags (56.2%) were negative symptom tags (symptoms absent). Positive symptom tags included ARAT-related AEs such as "pain," "skin disorders," "fatigue," and "gastrointestinal symptoms." Many other symptoms were classified as serious AEs. Furthermore, differences in symptom tag profiles reflecting pharmacists' AE monitoring were observed between androgen synthesis inhibition and androgen receptor signaling inhibition.
Conclusions: The NER system successfully extracted AEs from pharmaceutical care records of patients prescribed ARATs, demonstrating its potential to systematically track the presence and absence of AEs in outpatients. Based on the analysis of a large volume of pharmaceutical medical records using the NER system, community pharmacists not only detect potential AEs but also actively monitor the absence of severe AEs, offering valuable insights for the continuous improvement of patient safety management.