Yingliang Zhao , Yong Zheng , Kai Cui , Peiliang Shen , Chi Sun Poon , Juhyuk Moon , Guangmin Peng , Ruilai Guo , Daohui Xia
{"title":"An innovative ternary carbon-fixing cementitious system of cement-fly ash-carbonated steel slag","authors":"Yingliang Zhao , Yong Zheng , Kai Cui , Peiliang Shen , Chi Sun Poon , Juhyuk Moon , Guangmin Peng , Ruilai Guo , Daohui Xia","doi":"10.1016/j.cemconcomp.2025.106042","DOIUrl":null,"url":null,"abstract":"<div><div>The present work introduced an innovative cementitious system named CFCS, combining cement, fly ash (FA), and carbonated steel slag (CS), which exhibited both high early and later-age compressive strength along with significantly lower carbon emissions. This was achieved by producing highly reactive silica gels and carbon-fixing calcium carbonates (<em>Cc</em>) from steel slag (SS) via CO<sub>2</sub>-assisted wet grinding. The results indicate that CFCS shows remarkable improvements in compressive strength, about 26 % and 34 % higher compared to the system of cement-FA-limestone (CFL) at 1 d and 28 d, respectively. The superior early performance of CFCS is attributed to the high pozzolanic reactivity of silica gels in CS, which facilitates the formation of additional calcium-silicate-hydrate (C-S-H) gels. Additionally, reactive <em>Cc</em> readily reacted with aluminates to form monocarbonate (Mc). These gels act as nucleation sites, promoting a higher cement hydration degree and contributing to early strength development. The accelerated cement hydration induced by CS creates a favorable environment for the higher reaction degree of fly ash (FA), resulting in sustained enhancement of compressive strength at later stages. Moreover, the carbon reduction of CFCS can reach about 64 % compared to ordinary Portland cement, representing an ultra-low carbon cementitous system.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106042"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001246","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work introduced an innovative cementitious system named CFCS, combining cement, fly ash (FA), and carbonated steel slag (CS), which exhibited both high early and later-age compressive strength along with significantly lower carbon emissions. This was achieved by producing highly reactive silica gels and carbon-fixing calcium carbonates (Cc) from steel slag (SS) via CO2-assisted wet grinding. The results indicate that CFCS shows remarkable improvements in compressive strength, about 26 % and 34 % higher compared to the system of cement-FA-limestone (CFL) at 1 d and 28 d, respectively. The superior early performance of CFCS is attributed to the high pozzolanic reactivity of silica gels in CS, which facilitates the formation of additional calcium-silicate-hydrate (C-S-H) gels. Additionally, reactive Cc readily reacted with aluminates to form monocarbonate (Mc). These gels act as nucleation sites, promoting a higher cement hydration degree and contributing to early strength development. The accelerated cement hydration induced by CS creates a favorable environment for the higher reaction degree of fly ash (FA), resulting in sustained enhancement of compressive strength at later stages. Moreover, the carbon reduction of CFCS can reach about 64 % compared to ordinary Portland cement, representing an ultra-low carbon cementitous system.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.