Wen Zhou, Yading Xu, Zhaozheng Meng, Jinbao Xie, Yubao Zhou, Erik Schlangen, Branko Šavija
{"title":"Filament stitching: An architected printing strategy to mitigate anisotropy in 3D-Printed engineered cementitious composites (ECC)","authors":"Wen Zhou, Yading Xu, Zhaozheng Meng, Jinbao Xie, Yubao Zhou, Erik Schlangen, Branko Šavija","doi":"10.1016/j.cemconcomp.2025.106044","DOIUrl":null,"url":null,"abstract":"<div><div>Anisotropy in 3D-printed concrete structures has persistently raised concerns regarding structural integrity and safety. In this study, an architected 3D printing strategy, “stitching”, was proposed to mitigate anisotropy in 3D-printed Engineered Cementitious Composites (ECC). This approach integrates the direction-dependent tensile resistance of extruded ECC, the mechanical interlocking between three-dimensional layers, and a deliberately engineered interwoven interface system. As a result, the out-of-plane direction of the printed structure can be self-reinforced without external reinforcements. Four-point bending tests demonstrated that the “stitching” pattern induced multi-cracking and flexural-hardening behavior in the out-of-plane direction, boosting its energy dissipation to 343 % of the reference “parallel” printing and achieving 48.6 % of cast ECC. Additionally, micro-CT scanning and acoustic emission tests further validated the controlled crack propagation enabled by the engineered interface architecture. The proposed strategy has been proven to substantially alleviate anisotropy and enhance structural integrity.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106044"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652500126X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anisotropy in 3D-printed concrete structures has persistently raised concerns regarding structural integrity and safety. In this study, an architected 3D printing strategy, “stitching”, was proposed to mitigate anisotropy in 3D-printed Engineered Cementitious Composites (ECC). This approach integrates the direction-dependent tensile resistance of extruded ECC, the mechanical interlocking between three-dimensional layers, and a deliberately engineered interwoven interface system. As a result, the out-of-plane direction of the printed structure can be self-reinforced without external reinforcements. Four-point bending tests demonstrated that the “stitching” pattern induced multi-cracking and flexural-hardening behavior in the out-of-plane direction, boosting its energy dissipation to 343 % of the reference “parallel” printing and achieving 48.6 % of cast ECC. Additionally, micro-CT scanning and acoustic emission tests further validated the controlled crack propagation enabled by the engineered interface architecture. The proposed strategy has been proven to substantially alleviate anisotropy and enhance structural integrity.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.