Nanoscaffold Ba0.6Sr0.4TiO3:Nd2O3 ferroelectric memristors crossbar array for neuromorphic computing and secure encryption

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2025-03-13 DOI:10.1016/j.jmat.2025.101051
Weifeng Zhang, Jikang Xu, Yongrui Wang, Yinxing Zhang, Yu Wang, Pengfei Li, Yongqing Jia, Zhen Zhao, Changliang Li, Biao Yang, Yue Hou, Zhenqiang Guo, Zeze Huang, Yincheng Qi, Xiaobing Yan
{"title":"Nanoscaffold Ba0.6Sr0.4TiO3:Nd2O3 ferroelectric memristors crossbar array for neuromorphic computing and secure encryption","authors":"Weifeng Zhang, Jikang Xu, Yongrui Wang, Yinxing Zhang, Yu Wang, Pengfei Li, Yongqing Jia, Zhen Zhao, Changliang Li, Biao Yang, Yue Hou, Zhenqiang Guo, Zeze Huang, Yincheng Qi, Xiaobing Yan","doi":"10.1016/j.jmat.2025.101051","DOIUrl":null,"url":null,"abstract":"Recent advancements in AI have spurred interest in ferroelectric memristors for neuromorphic chips due to their ability to precisely control resistive states through polarization flip-flop without electroforming. However, oxygen vacancies in these devices often cause high leakage current, low endurance, and dispersed switching voltages. Here, we introduce a silicon-based integrated (Ba<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub>)<sub>0.5</sub>(Nd<sub>2</sub>O<sub>3</sub>)<sub>0.5</sub> (BSTN) nanoscaffolded ferroelectric thin film memristor with a vertically self-assembled nanocomposite structure (VSNs) optimally oriented on La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub>/SrTiO<sub>3</sub>/P–Si substrates. This device demonstrates a widely tunable ferroelectric domain range (0°–180°), high remnant polarization (21.04 μC/cm<sup>2</sup>), and a greater number of unitary states (16 states or 4 bits). It exhibits high durability, enduring over 10<sup>9</sup> switching cycles. The switching mechanism combines ferroelectric polarization and oxygen vacancy migration, enabling the simulation of biological synaptic functions via bi-directional conductance tunability. Additionally, we implemented a low-power (0.57 pJ per event) multi-factor secure encryption system for smart locks using 16×16 BSTN memristor crossbar arrays and a pressure sensor. Under multiple factors (disordered inputs, specific users, and corresponding passwords) the system recognized passwords with 97.6% accuracy and a 3.8% loss rate after 500 iterations. Overall, this work establishes a robust foundation for advancing multilevel storage, neuromorphic computing, and AI chip applications based on ferroelectric memristors.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"5 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in AI have spurred interest in ferroelectric memristors for neuromorphic chips due to their ability to precisely control resistive states through polarization flip-flop without electroforming. However, oxygen vacancies in these devices often cause high leakage current, low endurance, and dispersed switching voltages. Here, we introduce a silicon-based integrated (Ba0.6Sr0.4TiO3)0.5(Nd2O3)0.5 (BSTN) nanoscaffolded ferroelectric thin film memristor with a vertically self-assembled nanocomposite structure (VSNs) optimally oriented on La0.67Sr0.33MnO3/SrTiO3/P–Si substrates. This device demonstrates a widely tunable ferroelectric domain range (0°–180°), high remnant polarization (21.04 μC/cm2), and a greater number of unitary states (16 states or 4 bits). It exhibits high durability, enduring over 109 switching cycles. The switching mechanism combines ferroelectric polarization and oxygen vacancy migration, enabling the simulation of biological synaptic functions via bi-directional conductance tunability. Additionally, we implemented a low-power (0.57 pJ per event) multi-factor secure encryption system for smart locks using 16×16 BSTN memristor crossbar arrays and a pressure sensor. Under multiple factors (disordered inputs, specific users, and corresponding passwords) the system recognized passwords with 97.6% accuracy and a 3.8% loss rate after 500 iterations. Overall, this work establishes a robust foundation for advancing multilevel storage, neuromorphic computing, and AI chip applications based on ferroelectric memristors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Nanoscaffold Ba0.6Sr0.4TiO3:Nd2O3 ferroelectric memristors crossbar array for neuromorphic computing and secure encryption Enhancing room temperature electron mobility at high carrier concentration in transparent BaSnO3/La:BaSnO3/BaSnO3 heterostructures Relationships between structure and properties in commercial lead zirconate titanate (PZT) piezoceramics Effective binding sufficiently-small SiO2 nanoparticles within carbon nanosheets framework enables a high-performing and durable anode for lithium-ion batteries Laser driven 2D heterostructure nanocomposite membranes with bimodal photothermal and photodynamic functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1