Deyu Zhang, Songze Song, Jing Lin, Tianxing Ye, Xiao Yang, Qiwei Jiang, Yue Mi, Mengting Zhang, Xiangwei Ge, Yanjie Shen, Peizhe Du, Yanzhu Shi, Xiujuan Zhang, Ling Li, Yanan Zhang, Lihua Ding, Jie Liu, Youzhi Zhang, Shan Gao, Qinong Ye
{"title":"Glutamine binds HSC70 to transduce signals inhibiting IFN-β-mediated immunogenic cell death","authors":"Deyu Zhang, Songze Song, Jing Lin, Tianxing Ye, Xiao Yang, Qiwei Jiang, Yue Mi, Mengting Zhang, Xiangwei Ge, Yanjie Shen, Peizhe Du, Yanzhu Shi, Xiujuan Zhang, Ling Li, Yanan Zhang, Lihua Ding, Jie Liu, Youzhi Zhang, Shan Gao, Qinong Ye","doi":"10.1016/j.devcel.2025.02.012","DOIUrl":null,"url":null,"abstract":"Glutamine plays a role in cell signaling that regulates gene expression and impacts tumorigenesis. However, it is still unclear how glutamine transduces signals in cells. Here, we show that glutamine binds to heat shock cognate protein 70 (HSC70) to stimulate the deubiquitinase otubain domain containing protein (OTUD4) independently of known glutamine metabolic or signaling pathways, resulting in lactate dehydrogenase A (LDHA) stabilization via the microautophagy-lysosome pathway, increased lactate production and decreased expression of interferon (IFN)-β and its targets, hallmarks of immunogenic cell death (ICD). In cancer cell lines and patient-derived organoids and xenografts, glutamine depletion or glutamine transport inhibition combined with ICD-inducing chemotherapeutic drugs synergistically activates IFN-β, promotes CD8<sup>+</sup> T cell recruitment, and inhibits cancer cell growth via the OTUD4/LDHA axis. CD8 expression is negatively correlated with expression of the glutamine transporter alanine/serine/cysteine transporter 2 (ASCT2), OTUD4, and LDHA in cancer patients. Thus, we identify an intracellular glutamine signaling pathway, and targeting this pathway is a promising strategy for cancer treatment.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"87 2 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.02.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamine plays a role in cell signaling that regulates gene expression and impacts tumorigenesis. However, it is still unclear how glutamine transduces signals in cells. Here, we show that glutamine binds to heat shock cognate protein 70 (HSC70) to stimulate the deubiquitinase otubain domain containing protein (OTUD4) independently of known glutamine metabolic or signaling pathways, resulting in lactate dehydrogenase A (LDHA) stabilization via the microautophagy-lysosome pathway, increased lactate production and decreased expression of interferon (IFN)-β and its targets, hallmarks of immunogenic cell death (ICD). In cancer cell lines and patient-derived organoids and xenografts, glutamine depletion or glutamine transport inhibition combined with ICD-inducing chemotherapeutic drugs synergistically activates IFN-β, promotes CD8+ T cell recruitment, and inhibits cancer cell growth via the OTUD4/LDHA axis. CD8 expression is negatively correlated with expression of the glutamine transporter alanine/serine/cysteine transporter 2 (ASCT2), OTUD4, and LDHA in cancer patients. Thus, we identify an intracellular glutamine signaling pathway, and targeting this pathway is a promising strategy for cancer treatment.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.