Identifying cross-lineage dependencies of cell-type-specific regulators in mouse gastruloids

IF 10.7 1区 生物学 Q1 CELL BIOLOGY Developmental cell Pub Date : 2025-03-17 DOI:10.1016/j.devcel.2025.02.013
Luca Braccioli, Teun van den Brand, Noemi Alonso Saiz, Charis Fountas, Patrick H.N. Celie, Justina Kazokaitė-Adomaitienė, Elzo de Wit
{"title":"Identifying cross-lineage dependencies of cell-type-specific regulators in mouse gastruloids","authors":"Luca Braccioli, Teun van den Brand, Noemi Alonso Saiz, Charis Fountas, Patrick H.N. Celie, Justina Kazokaitė-Adomaitienė, Elzo de Wit","doi":"10.1016/j.devcel.2025.02.013","DOIUrl":null,"url":null,"abstract":"Correct gene expression levels are crucial for normal development. Advances in genomics enable the inference of gene regulatory programs active during development but cannot capture the complex multicellular interactions occurring during mammalian embryogenesis <em>in utero</em>. <em>In vitro</em> models of mammalian development, like gastruloids, can overcome this limitation. Using time-resolved single-cell chromatin accessibility analysis, we delineated the regulatory profile during mouse gastruloid development, identifying critical drivers of developmental transitions. Gastruloids develop from bipotent progenitor cells driven by the transcription factors (TFs) OCT4, SOX2, and TBXT, differentiating into the mesoderm (characterized by the mesogenin 1 [MSGN1]) and spinal cord (characterized by CDX2). ΔCDX gastruloids fail to form spinal cord, while <em>Msgn1</em> ablation inhibits paraxial mesoderm and spinal cord development. Chimeric gastruloids with ΔMSGN1 and wild-type cells formed both tissues, indicating that inter-tissue communication is necessary for spinal cord formation. Our work has important implications for studying inter-tissue communication and gene regulatory programs in development.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"20 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.02.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Correct gene expression levels are crucial for normal development. Advances in genomics enable the inference of gene regulatory programs active during development but cannot capture the complex multicellular interactions occurring during mammalian embryogenesis in utero. In vitro models of mammalian development, like gastruloids, can overcome this limitation. Using time-resolved single-cell chromatin accessibility analysis, we delineated the regulatory profile during mouse gastruloid development, identifying critical drivers of developmental transitions. Gastruloids develop from bipotent progenitor cells driven by the transcription factors (TFs) OCT4, SOX2, and TBXT, differentiating into the mesoderm (characterized by the mesogenin 1 [MSGN1]) and spinal cord (characterized by CDX2). ΔCDX gastruloids fail to form spinal cord, while Msgn1 ablation inhibits paraxial mesoderm and spinal cord development. Chimeric gastruloids with ΔMSGN1 and wild-type cells formed both tissues, indicating that inter-tissue communication is necessary for spinal cord formation. Our work has important implications for studying inter-tissue communication and gene regulatory programs in development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
期刊最新文献
Identifying cross-lineage dependencies of cell-type-specific regulators in mouse gastruloids Glutamine binds HSC70 to transduce signals inhibiting IFN-β-mediated immunogenic cell death Piezo-dependent surveillance of matrix stiffness generates transient cells that repair the basement membrane Orderly specification and precise laminar deployment of mouse cortical projection neuron types through intermediate progenitors Different release modes of α-tectorin contribute to the development of the tectorial membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1