Multi-scale feature fusion model for real-time Blood glucose monitoring and hyperglycemia prediction based on wearable devices

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2025-03-01 DOI:10.1016/j.medengphy.2025.104312
Yang Song , Ziyu Yuan , Yuxin Wu
{"title":"Multi-scale feature fusion model for real-time Blood glucose monitoring and hyperglycemia prediction based on wearable devices","authors":"Yang Song ,&nbsp;Ziyu Yuan ,&nbsp;Yuxin Wu","doi":"10.1016/j.medengphy.2025.104312","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring of blood glucose levels and the prediction of hyperglycemia are critical for the management of diabetes and the enhancement of medical efficiency. The primary challenge lies in uncovering the correlations among physiological information, nutritional intake, and other features, and addressing the issue of scale disparity among these features, in addition to considering the impact of individual variances on the model's accuracy. This paper introduces a universal, wearable device-assisted, multi-scale feature fusion model for real-time blood glucose monitoring and hyperglycemia prediction. It aims to more effectively capture the local correlations between diverse features and their inherent temporal relationships, overcoming the challenges of physiological data redundancy at large time scales and the incompleteness of nutritional intake data at smaller time scales. Furthermore, we have devised a personalized tuner strategy to enhance the model's accuracy and stability by continuously collecting personal data from users of the wearable devices to fine-tune the generic model, thereby accommodating individual differences and providing patients with more precise health management services. The model's performance, assessed using public datasets, indicates that the real-time monitoring error in terms of Mean Squared Error (MSE) is 0.22mmol/L, with a prediction accuracy for hyperglycemia occurrences of 96.75%. The implementation of the personalized tuner strategy yielded an average improvement rate of 1.96% on individual user datasets. This study on blood glucose monitoring and hyperglycemia prediction, facilitated by wearable devices, assists users in better managing their blood sugar levels and holds significant clinical application prospects.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"138 ","pages":"Article 104312"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000311","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate monitoring of blood glucose levels and the prediction of hyperglycemia are critical for the management of diabetes and the enhancement of medical efficiency. The primary challenge lies in uncovering the correlations among physiological information, nutritional intake, and other features, and addressing the issue of scale disparity among these features, in addition to considering the impact of individual variances on the model's accuracy. This paper introduces a universal, wearable device-assisted, multi-scale feature fusion model for real-time blood glucose monitoring and hyperglycemia prediction. It aims to more effectively capture the local correlations between diverse features and their inherent temporal relationships, overcoming the challenges of physiological data redundancy at large time scales and the incompleteness of nutritional intake data at smaller time scales. Furthermore, we have devised a personalized tuner strategy to enhance the model's accuracy and stability by continuously collecting personal data from users of the wearable devices to fine-tune the generic model, thereby accommodating individual differences and providing patients with more precise health management services. The model's performance, assessed using public datasets, indicates that the real-time monitoring error in terms of Mean Squared Error (MSE) is 0.22mmol/L, with a prediction accuracy for hyperglycemia occurrences of 96.75%. The implementation of the personalized tuner strategy yielded an average improvement rate of 1.96% on individual user datasets. This study on blood glucose monitoring and hyperglycemia prediction, facilitated by wearable devices, assists users in better managing their blood sugar levels and holds significant clinical application prospects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Measurement of heart rate from long-distance videos via projection of rotated orthogonal bases in POS Surgical technique and implant design affect abduction kinematics and functional outcomes after reverse shoulder arthroplasty The effect of bone plasticity models on simulations of primary fixation in total knee arthroplasty Blinded prediction of custom-made pelvic implant failure using patient-specific finite element modeling Characterization of nonlinear stress relaxation of the femoral and tibial trabecular bone for computational modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1