Measurement of heart rate from long-distance videos via projection of rotated orthogonal bases in POS

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2025-03-13 DOI:10.1016/j.medengphy.2025.104326
Bing Rao , Ruige Fang , Changchen Zhao , Jie Bai
{"title":"Measurement of heart rate from long-distance videos via projection of rotated orthogonal bases in POS","authors":"Bing Rao ,&nbsp;Ruige Fang ,&nbsp;Changchen Zhao ,&nbsp;Jie Bai","doi":"10.1016/j.medengphy.2025.104326","DOIUrl":null,"url":null,"abstract":"<div><div>Remote photoplethysmography (rPPG) has long been an active research topic. Existing rPPG approaches achieve high accuracy of heart rate extraction, as long as the user is relatively close to the camera (typically, less than 1 meter distance). This article investigates the performance of existing rPPG approaches under the long-distance recording conditions and proposes a novel Projection of Rotated Orthogonal Bases in POS (ProPOS) algorithm for heart rate extraction. A set of orthogonal projection bases is generated around the original plain of POS algorithm. The raw measurement traces are projected on these bases and the final output signal is obtained by a designed SNR selection criterion. The long-distance rPPG (LD-rPPG) dataset is established for long-distance rPPG research by varying the recording distance from 3 m-30 m. Extensive experiments are performed in comparison with existing approaches. Experiments show that videos recorded by HikVision DS-V108 and Logitech C920 cameras contain a certain amount of physiological signal whereas the videos recorded by HikVision DS-U102D and Mercury cameras contain little physiological signal. Using zoom lenses is beneficial to improve the rPPG measurement accuracy under long-distance conditions.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"138 ","pages":"Article 104326"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000451","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Remote photoplethysmography (rPPG) has long been an active research topic. Existing rPPG approaches achieve high accuracy of heart rate extraction, as long as the user is relatively close to the camera (typically, less than 1 meter distance). This article investigates the performance of existing rPPG approaches under the long-distance recording conditions and proposes a novel Projection of Rotated Orthogonal Bases in POS (ProPOS) algorithm for heart rate extraction. A set of orthogonal projection bases is generated around the original plain of POS algorithm. The raw measurement traces are projected on these bases and the final output signal is obtained by a designed SNR selection criterion. The long-distance rPPG (LD-rPPG) dataset is established for long-distance rPPG research by varying the recording distance from 3 m-30 m. Extensive experiments are performed in comparison with existing approaches. Experiments show that videos recorded by HikVision DS-V108 and Logitech C920 cameras contain a certain amount of physiological signal whereas the videos recorded by HikVision DS-U102D and Mercury cameras contain little physiological signal. Using zoom lenses is beneficial to improve the rPPG measurement accuracy under long-distance conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Measurement of heart rate from long-distance videos via projection of rotated orthogonal bases in POS Surgical technique and implant design affect abduction kinematics and functional outcomes after reverse shoulder arthroplasty The effect of bone plasticity models on simulations of primary fixation in total knee arthroplasty Blinded prediction of custom-made pelvic implant failure using patient-specific finite element modeling Characterization of nonlinear stress relaxation of the femoral and tibial trabecular bone for computational modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1