Yunfeng Bao , Wenrui Wang , Xiaoqiang Qi , Siyao Guo , Yu Liu , Zhiqing Jia , Zuquan Jin
{"title":"The synergistic regulation of micro sequence interface and macro bionic structure for superior microwave absorption performance","authors":"Yunfeng Bao , Wenrui Wang , Xiaoqiang Qi , Siyao Guo , Yu Liu , Zhiqing Jia , Zuquan Jin","doi":"10.1016/j.compositesb.2025.112380","DOIUrl":null,"url":null,"abstract":"<div><div>Micro-interface control and macro-structure design are crucial factors in achieving outstanding electromagnetic wave absorption (EMA) absorbers. However, it is still a challenge to obtain efficient EMA materials to satisfy practical applications through the synergistic regulation of the two. Herein, unique sequential interface engineering is proposed to ingeniously customize a series of FeCo nanochains (FC NCs) with various particle interface self-assembly combination modes, including face-to-face, corner-to-corner, and squeeze-to-squeeze. The dipole polarization, interfacial polarization, and magnetic coupling strength were enhanced to realize dielectric-magnetic synergies coupled with Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene for exceptional EMA performance. The optimized squeeze-to-squeeze-shaped FeCo Nanochains/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (FC3/MXene) exhibits the minimum reflection loss (<em>RL</em><sub><em>min</em></sub>) value of −60.95 dB at 1.897 mm and the reflection loss (<em>RL)</em> value of −51.46 dB at an ultralow thickness of 1.143 mm (The EMA efficiency exceeds 99.999 %). Additionally, a bionic periodic structure inspired by the sea urchin shell was designed based on the high-performance absorber FC3/MXene, achieving the impressive value of −64.48 dB and a whole absorption band covering 2−18 GHz, thanks to its isotropic structure and high porosity. Furthermore, in radar cross-section (RCS) simulations, FC3/MXene absorbers effectively reduce the radar detection distance of an unmanned aerial vehicle (UAV), demonstrating excellent stealth characteristics. Looking ahead, this work not only achieves strong RL intensity at ultralow thickness through sequential interface engineering but also obtains the super wide absorption band by bionic periodic structure design, opening new possibilities for diverse advanced technological applications.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112380"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002720","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-interface control and macro-structure design are crucial factors in achieving outstanding electromagnetic wave absorption (EMA) absorbers. However, it is still a challenge to obtain efficient EMA materials to satisfy practical applications through the synergistic regulation of the two. Herein, unique sequential interface engineering is proposed to ingeniously customize a series of FeCo nanochains (FC NCs) with various particle interface self-assembly combination modes, including face-to-face, corner-to-corner, and squeeze-to-squeeze. The dipole polarization, interfacial polarization, and magnetic coupling strength were enhanced to realize dielectric-magnetic synergies coupled with Ti3C2Tx MXene for exceptional EMA performance. The optimized squeeze-to-squeeze-shaped FeCo Nanochains/Ti3C2Tx MXene (FC3/MXene) exhibits the minimum reflection loss (RLmin) value of −60.95 dB at 1.897 mm and the reflection loss (RL) value of −51.46 dB at an ultralow thickness of 1.143 mm (The EMA efficiency exceeds 99.999 %). Additionally, a bionic periodic structure inspired by the sea urchin shell was designed based on the high-performance absorber FC3/MXene, achieving the impressive value of −64.48 dB and a whole absorption band covering 2−18 GHz, thanks to its isotropic structure and high porosity. Furthermore, in radar cross-section (RCS) simulations, FC3/MXene absorbers effectively reduce the radar detection distance of an unmanned aerial vehicle (UAV), demonstrating excellent stealth characteristics. Looking ahead, this work not only achieves strong RL intensity at ultralow thickness through sequential interface engineering but also obtains the super wide absorption band by bionic periodic structure design, opening new possibilities for diverse advanced technological applications.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.