LLM-IE: a python package for biomedical generative information extraction with large language models.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2025-03-12 eCollection Date: 2025-04-01 DOI:10.1093/jamiaopen/ooaf012
Enshuo Hsu, Kirk Roberts
{"title":"LLM-IE: a python package for biomedical generative information extraction with large language models.","authors":"Enshuo Hsu, Kirk Roberts","doi":"10.1093/jamiaopen/ooaf012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Despite the recent adoption of large language models (LLMs) for biomedical information extraction (IE), challenges in prompt engineering and algorithms persist, with no dedicated software available. To address this, we developed <i>LLM-IE</i>: a Python package for building complete IE pipelines.</p><p><strong>Materials and methods: </strong>The <i>LLM-IE</i> supports named entity recognition, entity attribute extraction, and relation extraction tasks. We benchmarked it on the i2b2 clinical datasets.</p><p><strong>Results: </strong>The sentence-based prompting algorithm resulted in the best 8-shot performance of over 70% strict F1 for entity extraction and about 60% F1 for entity attribute extraction.</p><p><strong>Discussion: </strong>We developed a Python package, <i>LLM-IE,</i> highlighting (1) an interactive LLM agent to support schema definition and prompt design, (2) state-of-the-art prompting algorithms, and (3) visualization features.</p><p><strong>Conclusion: </strong>The <i>LLM-IE</i> provides essential building blocks for developing robust information extraction pipelines. Future work will aim to expand its features and further optimize computational efficiency.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 2","pages":"ooaf012"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Despite the recent adoption of large language models (LLMs) for biomedical information extraction (IE), challenges in prompt engineering and algorithms persist, with no dedicated software available. To address this, we developed LLM-IE: a Python package for building complete IE pipelines.

Materials and methods: The LLM-IE supports named entity recognition, entity attribute extraction, and relation extraction tasks. We benchmarked it on the i2b2 clinical datasets.

Results: The sentence-based prompting algorithm resulted in the best 8-shot performance of over 70% strict F1 for entity extraction and about 60% F1 for entity attribute extraction.

Discussion: We developed a Python package, LLM-IE, highlighting (1) an interactive LLM agent to support schema definition and prompt design, (2) state-of-the-art prompting algorithms, and (3) visualization features.

Conclusion: The LLM-IE provides essential building blocks for developing robust information extraction pipelines. Future work will aim to expand its features and further optimize computational efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Barriers to telehealth uptake and use: a scoping review. Standardizing phenotypic algorithms for the classification of degenerative rotator cuff tear from electronic health record systems. LLM-IE: a python package for biomedical generative information extraction with large language models. Standards and infrastructure for multisite deployment of the research participant perception survey. Aligning prediction models with clinical information needs: infant sepsis case study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1