Hidden decomposers: Revisiting saprotrophy among soil protists and its potential impact on carbon cycling

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-03-14 DOI:10.1016/j.soilbio.2025.109786
François Maillard, Fredrik Klinghammer, Vincent E.J. Jassey, Bowen Zhang, Peter G. Kennedy, Enrique Lara, Stefan Geisen, Lars Tranvik, Edith Hammer, Anders Tunlid
{"title":"Hidden decomposers: Revisiting saprotrophy among soil protists and its potential impact on carbon cycling","authors":"François Maillard, Fredrik Klinghammer, Vincent E.J. Jassey, Bowen Zhang, Peter G. Kennedy, Enrique Lara, Stefan Geisen, Lars Tranvik, Edith Hammer, Anders Tunlid","doi":"10.1016/j.soilbio.2025.109786","DOIUrl":null,"url":null,"abstract":"Soil protists are increasingly recognized as key players in organic matter turnover, yet their role as direct decomposers (i.e., saprotrophs) remains underexplored compared to that of bacteria and fungi. Here, we synthesize ecological, physiological, and genomic evidence to highlight the potential of protists to actively decompose organic matter and influence soil carbon cycling. We distinguish two saprotrophic strategies within protists—lysotrophic (extracellular) and phagotrophic (intracellular)—with the latter being unique to protists among microbial decomposers. By directly ingesting particulate or dissolved organic matter, phagotrophic saprotrophic protists may bypass constraints associated with extracellular decomposition, potentially providing an advantage in breaking down recalcitrant substrates. In contrast, lysotrophic saprotrophy in protists involves the secretion of enzymes, similar to bacterial and fungal decomposers. We propose that integrating protist saprotrophy into conceptual and quantitative models of soil organic matter decomposition could address critical knowledge gaps. This integration involves employing functional genomics and functional ecology methodologies to determine, <em>in vitro</em>, the capacity of protists to function as saprotrophs, elucidate the genetic pathways underpinning saprotrophic activities, and assess, <em>in situ</em>, their direct contributions to organic matter decomposition processes. Ultimately, a clearer view of the organic matter decomposition capacities of soil protists will refine our understanding of microbial-driven carbon fluxes.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"183 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109786","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil protists are increasingly recognized as key players in organic matter turnover, yet their role as direct decomposers (i.e., saprotrophs) remains underexplored compared to that of bacteria and fungi. Here, we synthesize ecological, physiological, and genomic evidence to highlight the potential of protists to actively decompose organic matter and influence soil carbon cycling. We distinguish two saprotrophic strategies within protists—lysotrophic (extracellular) and phagotrophic (intracellular)—with the latter being unique to protists among microbial decomposers. By directly ingesting particulate or dissolved organic matter, phagotrophic saprotrophic protists may bypass constraints associated with extracellular decomposition, potentially providing an advantage in breaking down recalcitrant substrates. In contrast, lysotrophic saprotrophy in protists involves the secretion of enzymes, similar to bacterial and fungal decomposers. We propose that integrating protist saprotrophy into conceptual and quantitative models of soil organic matter decomposition could address critical knowledge gaps. This integration involves employing functional genomics and functional ecology methodologies to determine, in vitro, the capacity of protists to function as saprotrophs, elucidate the genetic pathways underpinning saprotrophic activities, and assess, in situ, their direct contributions to organic matter decomposition processes. Ultimately, a clearer view of the organic matter decomposition capacities of soil protists will refine our understanding of microbial-driven carbon fluxes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Rhizosphere metabolomics reveals benzoxazinoid-mediated interspecific root interactions that promote N and Fe uptake in intercropped plants Microbial functional trait predicts soil organic carbon across soil aggregates in Northeastern China Phosphate amendment drives bloom of RNA viruses after soil wet-up Gross soil phosphorus fluxes remain constant along forest recovery trajectories in central Africa How do root exudates prime the decomposition of soil organic matter following drought?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1