Mechanical properties of stabilized soil: study on recovered field samples from deep stabilization sites

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Geotechnics Pub Date : 2025-03-01 DOI:10.1016/j.trgeo.2025.101540
Ida-Maria E. Savila , Leena K. Korkiala-Tanttu , Juha A. Forsman , Monica S. Löfman
{"title":"Mechanical properties of stabilized soil: study on recovered field samples from deep stabilization sites","authors":"Ida-Maria E. Savila ,&nbsp;Leena K. Korkiala-Tanttu ,&nbsp;Juha A. Forsman ,&nbsp;Monica S. Löfman","doi":"10.1016/j.trgeo.2025.101540","DOIUrl":null,"url":null,"abstract":"<div><div>Recovery of field samples provides unique information about the strength and the long-term functionality of deep stabilized soil in actual transportation infrastructures. This paper presents the results of uniaxial compressive tests for the stabilized field samples of two railway sites and one street site located in Finland. Based on the research findings, there is considerable variation in the shear strength of the field samples, with coefficients of variation (COV) ranging from 0.12 to 0.61. However, the average strengths across all sites achieved their target values set during design. The results demonstrate a significant increase in strength over time, especially at the older research sites. In a railway site where deep stabilization was performed 3.5 years ago, the average shear strength of the stabilization was 797 kPa, which is more than seven times greater than the target strength for the stabilized columns. The relationships between shear strength and deformation ratios for the columns and soil surrounding the columns exceed the assumed ratio values presented in the guidelines of Finnish Transport Infrastructure Agency (FTIA), which present a value of less than 20 for completed stabilization. Based on the results of all sites, the deformation ratio between columns and clay was found to be as much as 101. This result implies that the stress concentrates more on the columns than assumed in the FTIA’s guidelines. Nevertheless, the structures have performed well without any visible differences in settlement or other damages.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101540"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000595","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Recovery of field samples provides unique information about the strength and the long-term functionality of deep stabilized soil in actual transportation infrastructures. This paper presents the results of uniaxial compressive tests for the stabilized field samples of two railway sites and one street site located in Finland. Based on the research findings, there is considerable variation in the shear strength of the field samples, with coefficients of variation (COV) ranging from 0.12 to 0.61. However, the average strengths across all sites achieved their target values set during design. The results demonstrate a significant increase in strength over time, especially at the older research sites. In a railway site where deep stabilization was performed 3.5 years ago, the average shear strength of the stabilization was 797 kPa, which is more than seven times greater than the target strength for the stabilized columns. The relationships between shear strength and deformation ratios for the columns and soil surrounding the columns exceed the assumed ratio values presented in the guidelines of Finnish Transport Infrastructure Agency (FTIA), which present a value of less than 20 for completed stabilization. Based on the results of all sites, the deformation ratio between columns and clay was found to be as much as 101. This result implies that the stress concentrates more on the columns than assumed in the FTIA’s guidelines. Nevertheless, the structures have performed well without any visible differences in settlement or other damages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
期刊最新文献
Assembly connection joint strengthening approach using geosynthetics for future sustainable prefabricated bridge deck asphalt pavement Experimental investigation of the heave behaviors of ballastless railways on expansive soil foundations Stochastic investigation of the relationship between track geometry and ballast degradation rates Integral railway bridges with different transition zone designs Utilising construction and demolition waste in soft soil stabilisation: A prediction model for enhanced strength and stiffness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1