Improvement in magnetocaloric, mechanical and corrosion properties of La1.4Fe11Co0.8Si1.2 bulk composites prepared by hot-deformation and diffusion annealing
{"title":"Improvement in magnetocaloric, mechanical and corrosion properties of La1.4Fe11Co0.8Si1.2 bulk composites prepared by hot-deformation and diffusion annealing","authors":"X.C. Zhong , Z.H. Liao , G.P. Li , X. Huang , J.H. Huang , C.L. Liu , Y.D. Zhang , Z.W. Liu , D.L. Jiao , W.Q. Qiu , R.V. Ramanujan","doi":"10.1016/j.jmmm.2025.172944","DOIUrl":null,"url":null,"abstract":"<div><div>La-Fe-Si alloys are of high interest for near room temperature magnetocaloric applications. La<sub>1.4</sub>Fe<sub>11</sub>Co<sub>0.8</sub>Si<sub>1.2</sub> magnetocaloric composites were prepared by hot-deformation and diffusion annealing to improve the kinetics of the formation rate of the desired 1:13 phase and reduce its brittleness. The effects of La<sub>1.4</sub>Fe<sub>11</sub>Co<sub>0.8</sub>Si<sub>1.2</sub> particle size on the formation of 1:13 phase, as well as the magnetocaloric, mechanical and corrosion properties were investigated. The results showed that the process deployed in this work shortened the annealing time and promoted the formation of 1:13 phase. The initial particle size influenced phase formation during diffusion annealing. For smaller particle size, the 1:13 phase content and microstructural homogeneity were enhanced after annealing. The diffusion distance between the La-rich phase and the α-Fe phase decreased. Significantly, the bulk composites exhibited a large magnetic entropy change (5.6–6.1 J·kg<sup>−1</sup>·K<sup>−1</sup>, <em>μ</em><sub>0</sub>Δ<em>H</em> = 2 T) and high refrigeration cooling power (128.7–142.1 J·kg<sup>−1</sup>) near room temperature owing to its high 1:13 phase content. These composites also had large bending strength and good corrosion resistance. Thus, this processing technology was demonstrated to be a facile method to fabricate magnetocaloric composites with excellent near room temperature performance.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"622 ","pages":"Article 172944"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325001751","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
La-Fe-Si alloys are of high interest for near room temperature magnetocaloric applications. La1.4Fe11Co0.8Si1.2 magnetocaloric composites were prepared by hot-deformation and diffusion annealing to improve the kinetics of the formation rate of the desired 1:13 phase and reduce its brittleness. The effects of La1.4Fe11Co0.8Si1.2 particle size on the formation of 1:13 phase, as well as the magnetocaloric, mechanical and corrosion properties were investigated. The results showed that the process deployed in this work shortened the annealing time and promoted the formation of 1:13 phase. The initial particle size influenced phase formation during diffusion annealing. For smaller particle size, the 1:13 phase content and microstructural homogeneity were enhanced after annealing. The diffusion distance between the La-rich phase and the α-Fe phase decreased. Significantly, the bulk composites exhibited a large magnetic entropy change (5.6–6.1 J·kg−1·K−1, μ0ΔH = 2 T) and high refrigeration cooling power (128.7–142.1 J·kg−1) near room temperature owing to its high 1:13 phase content. These composites also had large bending strength and good corrosion resistance. Thus, this processing technology was demonstrated to be a facile method to fabricate magnetocaloric composites with excellent near room temperature performance.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.