Yujie Yue , Guojun Song , Li Li , Jie Zhao , Xupeng Li , Guoqiang Cao , Xiang Luo , Bentao Yu , Min Fang , Yuankai Li , Guangshun Wu , Lichun Ma
{"title":"Collaborative improvement of interfacial properties of carbon fiber/epoxy resin composites through modulus/toughness matching and gradient interface","authors":"Yujie Yue , Guojun Song , Li Li , Jie Zhao , Xupeng Li , Guoqiang Cao , Xiang Luo , Bentao Yu , Min Fang , Yuankai Li , Guangshun Wu , Lichun Ma","doi":"10.1016/j.compositesb.2025.112398","DOIUrl":null,"url":null,"abstract":"<div><div>The interface is crucial for the mechanical properties of composite which is tightly linked to the microstructure of CF surface and resin matrix. However, the modulus mismatch between CF and resin leads to stress concentration and poor interfacial performance. This study proposes a bidirectional structural design strategy aimed at optimizing the interfacial performance of CF/epoxy composites from the perspective of interfacial construction and modulus matching. An organic-inorganic three-dimensional hybrid particle <PDI,GO> (the notation <PDI,GO> indicates a composite formed between PDI and GO through both chemical and physical interactions) was synthesized to enhance the modulus and toughness of resin, as well as the chemical bonding, mechanical entanglement and wettability with resin of CF surface. Compared to the original and single pathway (either the CF or resin), the transverse tensile strength of the bidirectionally modified composites increased by 68.4%, 31.2% and 18.0%, and the interlaminar shear strength increased by 23.6%, 8.5%, 18.6%, respectively. Furthermore, a comprehensive exploration of synergistic reinforcement mechanisms and stress dispersion patterns at the composites was conducted. This bidirectional structural design strategy provides a new avenue for the next-generation high-performance composites in the fields of aerospace, rail transit and so on.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112398"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002902","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The interface is crucial for the mechanical properties of composite which is tightly linked to the microstructure of CF surface and resin matrix. However, the modulus mismatch between CF and resin leads to stress concentration and poor interfacial performance. This study proposes a bidirectional structural design strategy aimed at optimizing the interfacial performance of CF/epoxy composites from the perspective of interfacial construction and modulus matching. An organic-inorganic three-dimensional hybrid particle <PDI,GO> (the notation <PDI,GO> indicates a composite formed between PDI and GO through both chemical and physical interactions) was synthesized to enhance the modulus and toughness of resin, as well as the chemical bonding, mechanical entanglement and wettability with resin of CF surface. Compared to the original and single pathway (either the CF or resin), the transverse tensile strength of the bidirectionally modified composites increased by 68.4%, 31.2% and 18.0%, and the interlaminar shear strength increased by 23.6%, 8.5%, 18.6%, respectively. Furthermore, a comprehensive exploration of synergistic reinforcement mechanisms and stress dispersion patterns at the composites was conducted. This bidirectional structural design strategy provides a new avenue for the next-generation high-performance composites in the fields of aerospace, rail transit and so on.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.