Guangyu Qin , Yanan Liu , Yuefeng Yan , Ziyan Cheng , Guansheng Ma , Kaili Zhang , Xiaoxiao Huang
{"title":"Combined experiment and simulation on pore structure of graphene aerogel for microwave absorption and thermal insulation","authors":"Guangyu Qin , Yanan Liu , Yuefeng Yan , Ziyan Cheng , Guansheng Ma , Kaili Zhang , Xiaoxiao Huang","doi":"10.1016/j.compositesb.2025.112397","DOIUrl":null,"url":null,"abstract":"<div><div>The configuration of pore structures is of paramount importance for the microwave absorption and thermal insulation of conductive aerogels. Nevertheless, design methodologies that rely on extensive experimental experience have limited the applicability of conductive aerogels in radar-infrared compatible stealth applications. In this study, finite element simulations of microwave absorption and heat transfer properties are conducted using a simplified two-dimensional model. The wave-absorbing and heat-insulating properties of graphene aerogel as influenced by the pore structure are accurately predicted. The preparation of foamed graphene aerogels with isolated pores was conducted using a surfactant foaming process, with the process guided by simulation predictions. The size, number, and spacing of the bubbles can be flexibly controlled to provide the aerogel with an appropriate density and porosity, which balances the contradiction between the high attenuation capability and the impedance-matching nature. This enables the foamed aerogel to achieve reflection loss of −75.5 dB and ultra-wide effective absorption bandwidth of 9.5 GHz. Furthermore, the low density and isolated pores bestow upon the aerogel material exemplary thermal insulation capabilities, which masked the radiant temperature of a hot object from 135 °C to 50.8 °C. This work offers novel insights and a theoretical foundation for the design of pore structures in radar-infrared compatible stealth aerogels.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112397"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002896","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The configuration of pore structures is of paramount importance for the microwave absorption and thermal insulation of conductive aerogels. Nevertheless, design methodologies that rely on extensive experimental experience have limited the applicability of conductive aerogels in radar-infrared compatible stealth applications. In this study, finite element simulations of microwave absorption and heat transfer properties are conducted using a simplified two-dimensional model. The wave-absorbing and heat-insulating properties of graphene aerogel as influenced by the pore structure are accurately predicted. The preparation of foamed graphene aerogels with isolated pores was conducted using a surfactant foaming process, with the process guided by simulation predictions. The size, number, and spacing of the bubbles can be flexibly controlled to provide the aerogel with an appropriate density and porosity, which balances the contradiction between the high attenuation capability and the impedance-matching nature. This enables the foamed aerogel to achieve reflection loss of −75.5 dB and ultra-wide effective absorption bandwidth of 9.5 GHz. Furthermore, the low density and isolated pores bestow upon the aerogel material exemplary thermal insulation capabilities, which masked the radiant temperature of a hot object from 135 °C to 50.8 °C. This work offers novel insights and a theoretical foundation for the design of pore structures in radar-infrared compatible stealth aerogels.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.