Xiaoshi Zhang , Ryan Flanigan , Gijs de Kort , Ralph H. Colby , Alicyn M. Rhoades
{"title":"Isothermal crystallization of Poly(ether ether ketone)/carbon fiber composites","authors":"Xiaoshi Zhang , Ryan Flanigan , Gijs de Kort , Ralph H. Colby , Alicyn M. Rhoades","doi":"10.1016/j.compositesb.2025.112386","DOIUrl":null,"url":null,"abstract":"<div><div>The quiescent crystallization kinetics of Poly(ether ether ketone) (PEEK) carbon fiber composites are highly relevant to polymer processing techniques that operate no shear or low shear conditions, such as 3D printing and automated fiber placement. This study investigates the isothermal crystallization kinetics of neat PEEK and its carbon fiber counterparts. We analyzed one commercial grade with 30 wt% carbon fiber and two lab-compounded grades with lower carbon fiber contents (5 and 15 wt%) using X-ray Micro Computed Tomography (μCT) and calorimetry technologies. μCT analyzed the volume fractions of PEEK resin, carbon fibers, and voids formed during processing. The carbon fiber content was also determined based on the volumetric fraction of each component. Using differential scanning calorimetry (DSC) and fast scanning calorimetry (FSC), the overall crystallization kinetics were extracted for neat PEEK and its carbon fiber composites over a wide range of crystallization temperatures from 160 °C to 330 °C. All kinetics data were fitted well using the Hoffman-Lauritzen model to extract values for <em>U<sup>∗</sup></em>, <em>K</em><sub><em>0</em></sub>, and <em>K</em><sub><em>G</em></sub>. The results indicate that the energy barriers associated with chain segment mobility <em>U<sup>∗</sup></em> and nucleation <em>K</em><sub><em>G</em></sub> do not significantly change with the presence of carbon fiber. However, <em>K</em><sub><em>0</em></sub>, associated with the nucleation constant, decreases linearly with increasing non-resin volume fraction. Morphological investigations using scanning electron microscopy (SEM) and Fast Scanning Calorimetry - Atomic Force Microscopy (FSC-AFM) demonstrate the presence of weak surface nucleation and impingement effects from carbon fiber on PEEK resin crystallization. Based on these observations, we propose a simple mathematical model to describe the crystallization peak time of fiber-reinforced thermoplastic composites, in which fibers and voids primarily contribute to the slowdown of crystal growth.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112386"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002781","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quiescent crystallization kinetics of Poly(ether ether ketone) (PEEK) carbon fiber composites are highly relevant to polymer processing techniques that operate no shear or low shear conditions, such as 3D printing and automated fiber placement. This study investigates the isothermal crystallization kinetics of neat PEEK and its carbon fiber counterparts. We analyzed one commercial grade with 30 wt% carbon fiber and two lab-compounded grades with lower carbon fiber contents (5 and 15 wt%) using X-ray Micro Computed Tomography (μCT) and calorimetry technologies. μCT analyzed the volume fractions of PEEK resin, carbon fibers, and voids formed during processing. The carbon fiber content was also determined based on the volumetric fraction of each component. Using differential scanning calorimetry (DSC) and fast scanning calorimetry (FSC), the overall crystallization kinetics were extracted for neat PEEK and its carbon fiber composites over a wide range of crystallization temperatures from 160 °C to 330 °C. All kinetics data were fitted well using the Hoffman-Lauritzen model to extract values for U∗, K0, and KG. The results indicate that the energy barriers associated with chain segment mobility U∗ and nucleation KG do not significantly change with the presence of carbon fiber. However, K0, associated with the nucleation constant, decreases linearly with increasing non-resin volume fraction. Morphological investigations using scanning electron microscopy (SEM) and Fast Scanning Calorimetry - Atomic Force Microscopy (FSC-AFM) demonstrate the presence of weak surface nucleation and impingement effects from carbon fiber on PEEK resin crystallization. Based on these observations, we propose a simple mathematical model to describe the crystallization peak time of fiber-reinforced thermoplastic composites, in which fibers and voids primarily contribute to the slowdown of crystal growth.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.