Unexpected processing-induced particle/matrix interactions in magnetic composites based on thermoplastic matrix

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2025-03-10 DOI:10.1016/j.compositesb.2025.112399
Andrei Munteanu , Alenka Vesel , Arman Moini Jazani , Michal Sedlacik , Petra Drohsler , Martin Cvek
{"title":"Unexpected processing-induced particle/matrix interactions in magnetic composites based on thermoplastic matrix","authors":"Andrei Munteanu ,&nbsp;Alenka Vesel ,&nbsp;Arman Moini Jazani ,&nbsp;Michal Sedlacik ,&nbsp;Petra Drohsler ,&nbsp;Martin Cvek","doi":"10.1016/j.compositesb.2025.112399","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding processing-induced changes in the polymer composites is of the utmost necessity as it affects the final properties and the reliability of the products. Despite their importance, related investigations are frequently overlooked, especially in the case of magnetorheological elastomers (MREs). In this study, the processing-induced changes were investigated within an isotropic MRE based on a thermoplastic elastomer (TPE) matrix loaded with carbonyl iron (CI) microparticles. Systematic thermomechanical tests in the molten state were used to mimic the processing conditions, revealing the time evolution of the particle/matrix interactions. The interactions manifested as an increase in the viscoelastic properties, which was attributed to the development of a secondary network composed of the confined polymer chains in the vicinity of the CI particles. The restricted mobility improved the reinforcing effect and structural integrity but diminished the field-induced stiffening of the composite, i.e., the magnetorheological effect. The existence of the particle/matrix covalent bonding was postulated and explained based on the coupling reaction between the thermomechanically-induced radicals formed in the polymer chain and the alkoxyl radicals on the surface of the CI particles. The new findings are highly relevant for the further development of reprocessable and recyclable TPE-based MREs, while the robust measuring protocol is deemed to be implementable for studying particle/matrix interactions in diverse composite systems.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112399"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002914","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding processing-induced changes in the polymer composites is of the utmost necessity as it affects the final properties and the reliability of the products. Despite their importance, related investigations are frequently overlooked, especially in the case of magnetorheological elastomers (MREs). In this study, the processing-induced changes were investigated within an isotropic MRE based on a thermoplastic elastomer (TPE) matrix loaded with carbonyl iron (CI) microparticles. Systematic thermomechanical tests in the molten state were used to mimic the processing conditions, revealing the time evolution of the particle/matrix interactions. The interactions manifested as an increase in the viscoelastic properties, which was attributed to the development of a secondary network composed of the confined polymer chains in the vicinity of the CI particles. The restricted mobility improved the reinforcing effect and structural integrity but diminished the field-induced stiffening of the composite, i.e., the magnetorheological effect. The existence of the particle/matrix covalent bonding was postulated and explained based on the coupling reaction between the thermomechanically-induced radicals formed in the polymer chain and the alkoxyl radicals on the surface of the CI particles. The new findings are highly relevant for the further development of reprocessable and recyclable TPE-based MREs, while the robust measuring protocol is deemed to be implementable for studying particle/matrix interactions in diverse composite systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
SrCO3@PCL/PDA composite scaffold promote osteoporotic bone regeneration through immune regulation Succinic acid-based biodegradable hydrogels drive Bv2 microglial polarization by ATP metabolism A comparative analysis of quasi-static indentation and low-velocity impact on the free edges of CFRP composite laminates Tailoring of crystal size and significant enhancement of physical property, ductility and toughness in in-situ nano kraft lignin/nano-fibrillated cellulose biocomposite Facile method to enhance the optical properties of transparent glass fiber-reinforced epoxy composites by controlling the curing agent content ratio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1