{"title":"Fire response of steel frames retrofitted against progressive collapse","authors":"Luca Possidente , Fabio Freddi , Nicola Tondini","doi":"10.1016/j.firesaf.2025.104371","DOIUrl":null,"url":null,"abstract":"<div><div>A large share of the existing building stock was built before the implementation of design standards against progressive collapse and is in need for retrofitting. Retrofit measures are typically designed with a threat-independent approach, involving the removal of one or more structural elements. This approach has been widely applied to deal with events such as impacts or blasts (short-duration events), but may not be adequate for fire scenarios (long-duration events) due to peculiar phenomena such as restrained thermal expansion and degradation of mechanical properties. This is particularly relevant for steel structures, which are sensitive to thermal attack and are typically designed as low-redundant systems, and used in large industrial or strategic buildings. This paper investigates the fire response of a 9-storey steel moment-resisting frame before and after progressive collapse retrofitting. Three retrofit measures designed considering the removal of the central ground storey column are investigated, including a bracing system, a roof-truss, and the concrete encasement of critical columns. Parametric fires, different compartment scenarios, and various loading levels are considered. The retrofit measures are shown to improve the fire response of the structure by preventing or delaying collapse. Finally, the effectiveness and suitability of the measures in different circumstances are discussed.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104371"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000359","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A large share of the existing building stock was built before the implementation of design standards against progressive collapse and is in need for retrofitting. Retrofit measures are typically designed with a threat-independent approach, involving the removal of one or more structural elements. This approach has been widely applied to deal with events such as impacts or blasts (short-duration events), but may not be adequate for fire scenarios (long-duration events) due to peculiar phenomena such as restrained thermal expansion and degradation of mechanical properties. This is particularly relevant for steel structures, which are sensitive to thermal attack and are typically designed as low-redundant systems, and used in large industrial or strategic buildings. This paper investigates the fire response of a 9-storey steel moment-resisting frame before and after progressive collapse retrofitting. Three retrofit measures designed considering the removal of the central ground storey column are investigated, including a bracing system, a roof-truss, and the concrete encasement of critical columns. Parametric fires, different compartment scenarios, and various loading levels are considered. The retrofit measures are shown to improve the fire response of the structure by preventing or delaying collapse. Finally, the effectiveness and suitability of the measures in different circumstances are discussed.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.