{"title":"Development of real-scale transformer fire test technology and evaluation of a solid aerosol-based fire suppression system","authors":"Jong-Geon Lee , Hyun-Ho Choi","doi":"10.1016/j.firesaf.2025.104376","DOIUrl":null,"url":null,"abstract":"<div><div>Transformer fires pose significant risks to both infrastructure and human safety, and various technologies have been researched to mitigate these hazards. However, research on real-scale transformer fires remains limited due to a lack of failure data and the complexity of accurately simulating such fires. In this study, real-scale transformer fire simulation technology was further developed, and solid aerosol-based fire suppression systems were evaluated. The analysis included identifying the sources of transformer fires, studying their propagation patterns, and categorizing fire types. A testbed was constructed to simulate various fire conditions using the investigation results and a real-scale 154 kV transformer. The testbed was designed to simulate different types of transformer fires, including bushing, top, bottom, and wall fires, closely imposing real-case scenarios. Utilizing the constructed facility, fire scenarios caused by bushing insulation breakdowns were simulated, and the size of the fire source was analyzed to replicate actual fire conditions as accurately as possible. Additionally, the performance of the environmentally friendly and efficient solid aerosol-based fire suppression system was evaluated. The results demonstrated that, unlike conventional fire suppression methods, the solid aerosol system could effectively suppress transformer fires in partially opened environment with 3.2 % of opening ratio, successfully extinguishing the fire within approximately 2 min after ignition.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104376"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000402","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Transformer fires pose significant risks to both infrastructure and human safety, and various technologies have been researched to mitigate these hazards. However, research on real-scale transformer fires remains limited due to a lack of failure data and the complexity of accurately simulating such fires. In this study, real-scale transformer fire simulation technology was further developed, and solid aerosol-based fire suppression systems were evaluated. The analysis included identifying the sources of transformer fires, studying their propagation patterns, and categorizing fire types. A testbed was constructed to simulate various fire conditions using the investigation results and a real-scale 154 kV transformer. The testbed was designed to simulate different types of transformer fires, including bushing, top, bottom, and wall fires, closely imposing real-case scenarios. Utilizing the constructed facility, fire scenarios caused by bushing insulation breakdowns were simulated, and the size of the fire source was analyzed to replicate actual fire conditions as accurately as possible. Additionally, the performance of the environmentally friendly and efficient solid aerosol-based fire suppression system was evaluated. The results demonstrated that, unlike conventional fire suppression methods, the solid aerosol system could effectively suppress transformer fires in partially opened environment with 3.2 % of opening ratio, successfully extinguishing the fire within approximately 2 min after ignition.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.