{"title":"An efficient resource orchestration algorithm for enhancing throughput in fog computing-enabled vehicular networks","authors":"Md Asif Thanedar , Sanjaya Kumar Panda","doi":"10.1016/j.vehcom.2025.100911","DOIUrl":null,"url":null,"abstract":"<div><div>The delay-sensitive applications, such as self-driving, smart transportation, navigation, and augmented reality assistance, can be evolved in vehicular ad-hoc networks (VANETs) using one of the leading paradigms, fog computing (FC). The intelligent vehicles are connected to the roadside infrastructure, such as high power nodes (HPNs) and roadside units (RSUs), also called fog nodes (FNs), for obtaining on-demand services. These FNs possess finite resources and can provide services to limited vehicles. However, when vehicles reach the network spike in demand, the FNs become impuissant in furnishing services in the existing solutions. As a result, there is a significant reduction in the network throughput. Therefore, we propose an efficient resource orchestration (ERO) algorithm to maximize the throughput by reducing the allocated resource blocks (RBs) of FNs. The ERO algorithm partitions the FN coverage region into restricted and non-restricted coverage regions. Then, it coordinates the RBs allocation among FNs by reducing RBs for the vehicles in the non-restricted coverage regions. This reduction is carried out by migrating RBs for offloading upstream services so that the overall occupied capacity of FNs is minimized. ERO constructs the minimum priority queue using the occupied capacity of FNs to perform optimal RBs migration between pairs of FNs. The ERO algorithm is evaluated, and simulation results show that the proposed algorithm performs better in terms of throughput, serviceability, availability, and service capability than existing algorithms.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100911"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000385","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The delay-sensitive applications, such as self-driving, smart transportation, navigation, and augmented reality assistance, can be evolved in vehicular ad-hoc networks (VANETs) using one of the leading paradigms, fog computing (FC). The intelligent vehicles are connected to the roadside infrastructure, such as high power nodes (HPNs) and roadside units (RSUs), also called fog nodes (FNs), for obtaining on-demand services. These FNs possess finite resources and can provide services to limited vehicles. However, when vehicles reach the network spike in demand, the FNs become impuissant in furnishing services in the existing solutions. As a result, there is a significant reduction in the network throughput. Therefore, we propose an efficient resource orchestration (ERO) algorithm to maximize the throughput by reducing the allocated resource blocks (RBs) of FNs. The ERO algorithm partitions the FN coverage region into restricted and non-restricted coverage regions. Then, it coordinates the RBs allocation among FNs by reducing RBs for the vehicles in the non-restricted coverage regions. This reduction is carried out by migrating RBs for offloading upstream services so that the overall occupied capacity of FNs is minimized. ERO constructs the minimum priority queue using the occupied capacity of FNs to perform optimal RBs migration between pairs of FNs. The ERO algorithm is evaluated, and simulation results show that the proposed algorithm performs better in terms of throughput, serviceability, availability, and service capability than existing algorithms.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.