Optimizing the efficiency of InxGa1-xN/GaN quantum well solar cells using piezo-phototronic effects: The impact of external strain

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2025-03-14 DOI:10.1016/j.solener.2025.113425
Hamza Bousdra , Noureddine Ben Afkir , Jaafar Meziane , Mimoun Zazoui
{"title":"Optimizing the efficiency of InxGa1-xN/GaN quantum well solar cells using piezo-phototronic effects: The impact of external strain","authors":"Hamza Bousdra ,&nbsp;Noureddine Ben Afkir ,&nbsp;Jaafar Meziane ,&nbsp;Mimoun Zazoui","doi":"10.1016/j.solener.2025.113425","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the efficiency enhancement of <span><math><mrow><msub><mrow><mi>I</mi><mi>n</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>N</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>N</mi></mrow></math></span> multiple quantum well (MQW) solar cells through the application of piezo-phototronic effect, which modifies piezoelectric polarization charges at interfaces to raise efficiency. We investigated the impact of external strain on the performance of these solar cells to address the problem of lattice mismatch and its effect on energy conversion efficiency. Using a numerical computational model, our approach involves examining the effects of external strain on the electrical, optical, and band structure properties of the cells. The results showed a notable improvement in energy conversion efficiency with increases of 29.35 % and 21.28 %, respectively, for indium compositions of 0.2 and 0.35. Additionally, the photocurrent density increased from 1.61 mA/cm<sup>2</sup> to 2.43 mA/cm<sup>2</sup> and from 4.44 mA/cm<sup>2</sup> to 5.83 mA/cm<sup>2</sup> for both compositions. Band energy realignment calculations clarify that this enhancement is due to the correction of piezoelectric charges caused by lattice mismatch strain. Our findings show that the piezo-phototronic effect can be used to optimize <span><math><mrow><msub><mrow><mi>I</mi><mi>n</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>N</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>N</mi></mrow></math></span> MQW solar cells, provide a viable means of increasing the use of solar energy and developing solar technology.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"291 ","pages":"Article 113425"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001884","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the efficiency enhancement of InxGa1-xN/GaN multiple quantum well (MQW) solar cells through the application of piezo-phototronic effect, which modifies piezoelectric polarization charges at interfaces to raise efficiency. We investigated the impact of external strain on the performance of these solar cells to address the problem of lattice mismatch and its effect on energy conversion efficiency. Using a numerical computational model, our approach involves examining the effects of external strain on the electrical, optical, and band structure properties of the cells. The results showed a notable improvement in energy conversion efficiency with increases of 29.35 % and 21.28 %, respectively, for indium compositions of 0.2 and 0.35. Additionally, the photocurrent density increased from 1.61 mA/cm2 to 2.43 mA/cm2 and from 4.44 mA/cm2 to 5.83 mA/cm2 for both compositions. Band energy realignment calculations clarify that this enhancement is due to the correction of piezoelectric charges caused by lattice mismatch strain. Our findings show that the piezo-phototronic effect can be used to optimize InxGa1-xN/GaN MQW solar cells, provide a viable means of increasing the use of solar energy and developing solar technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Optimizing the efficiency of InxGa1-xN/GaN quantum well solar cells using piezo-phototronic effects: The impact of external strain The wet repair of sidewall damage in flexible inverted metamorphic five-junction solar cells PV backsheets survey protocol: A framework for geo-spatial field surveys for bulk material characterization and reliability analysis applied across 41 PV systems Performance investigation of multilayer-layers solar cell based in ZnS-CZTSSe TiO2/MoS2-rGO composite Photoanodes: A Path to improved electron transport and photovoltaic efficiency in Dye-Sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1