Impact of storm surge and power peaking on tidal-fluvial processes in microtidal Neretva River estuary

IF 2.6 3区 地球科学 Q1 MARINE & FRESHWATER BIOLOGY Estuarine Coastal and Shelf Science Pub Date : 2025-03-08 DOI:10.1016/j.ecss.2025.109227
Nino Krvavica , Marta Marija Gržić , Silvia Innocenti , Pascal Matte
{"title":"Impact of storm surge and power peaking on tidal-fluvial processes in microtidal Neretva River estuary","authors":"Nino Krvavica ,&nbsp;Marta Marija Gržić ,&nbsp;Silvia Innocenti ,&nbsp;Pascal Matte","doi":"10.1016/j.ecss.2025.109227","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the interactions between tides, storm surge, river flow, and power peaking in the microtidal Neretva River estuary, Croatia. Based on the existing NS_Tide tool, the study proposes a new non-stationary harmonic model adapted for microtidal conditions, which incorporates linear storm surge, as well as linear and quadratic river discharge terms. This model enhances the NS_Tide’s ability to accurately predict water levels from tide-dominated sections downstream to discharge-dominated areas upstream. River discharge was identified as the dominant factor for predicting stage levels at most stations, while the influence of storm surge, though consistent, decreased upstream. Strong tide-river interactions were observed throughout the study domain, with the stationary tidal component consistently contributing to water level fluctuations at all location and minimal influence from the tide-surge interaction component. Simulations using the STREAM numerical model were also used to isolate the variability in water levels caused by power peaking. These simulations demonstrated that high-frequency discharge fluctuations due to hydropower plant operations amplify the <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> constituent in upstream river sections and modulate the amplitudes of other tidal constituents in the estuarine and tidal river sections. The proposed method proved highly effective in the microtidal context of the Neretva River and shows potential for adaptation to mesotidal and macrotidal systems.</div></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"318 ","pages":"Article 109227"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272771425001052","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the interactions between tides, storm surge, river flow, and power peaking in the microtidal Neretva River estuary, Croatia. Based on the existing NS_Tide tool, the study proposes a new non-stationary harmonic model adapted for microtidal conditions, which incorporates linear storm surge, as well as linear and quadratic river discharge terms. This model enhances the NS_Tide’s ability to accurately predict water levels from tide-dominated sections downstream to discharge-dominated areas upstream. River discharge was identified as the dominant factor for predicting stage levels at most stations, while the influence of storm surge, though consistent, decreased upstream. Strong tide-river interactions were observed throughout the study domain, with the stationary tidal component consistently contributing to water level fluctuations at all location and minimal influence from the tide-surge interaction component. Simulations using the STREAM numerical model were also used to isolate the variability in water levels caused by power peaking. These simulations demonstrated that high-frequency discharge fluctuations due to hydropower plant operations amplify the S1 constituent in upstream river sections and modulate the amplitudes of other tidal constituents in the estuarine and tidal river sections. The proposed method proved highly effective in the microtidal context of the Neretva River and shows potential for adaptation to mesotidal and macrotidal systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
7.10%
发文量
374
审稿时长
9 months
期刊介绍: Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.
期刊最新文献
Stomach content analysis: Comparison amongst different sources of sampling in the study of the diet of sea lions in Argentina Editorial Board Impact of duck predation on the population of Manila clam (Ruditapes philippinarum) in tidal flat Contribution of different bacterial groups in the carbon flow through the microbial food web Impact of storm surge and power peaking on tidal-fluvial processes in microtidal Neretva River estuary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1