Difan Xiao, Marielle Driller, Karla Stein, Lars M Blank, Till Tiso
{"title":"Genome mining the black-yeast Aureobasidium pullulans NRRL 62031 for biotechnological traits.","authors":"Difan Xiao, Marielle Driller, Karla Stein, Lars M Blank, Till Tiso","doi":"10.1186/s12864-025-11395-2","DOIUrl":null,"url":null,"abstract":"<p><p>Aureobasidium pullulans is a yeast-like fungus known for its commercial biomanufacturing of pullulan. This study explores the genome of A. pullulans NRRL 62031, highlighting its biosynthetic potential, metabolic pathways, and physiological traits. Additionally, it demonstrates actual product formation and links molecular features to biotechnological applications. Phylogenetic analysis suggested it might be closely related to Aureobasidium melanogenum. While the functional annotation revealed a wide carbohydrate catabolism, growth evaluation demonstrated that the microbe can utilize not only saccharides but also polyols and organic acids. The extracellular cellulolytic, xylanolytic, and pectinolytic activities were indicated by the formation of visible halos on agar plates. The antiSMASH pipeline, NCBI Blastp alignment, and product qualification confirmed that A. pullulans NRRL 62031 can produce melanin, pullulan, polymalate, and polyol lipids. Moreover, yanuthone D, burnettramic acid A, choline, fructooligosaccharides, gluconic acid, and β-glucan might be synthesized by A. pullulans NRRL 62031. The results clearly show the extraordinary potential of A. pullulans NRRL 62031 as a microbial chassis for valorizing biomass residues into value-added bioproducts. The strong catabolic and anabolic capacities indicate significant promise for biotechnological applications. The results are discussed in the context of metabolic engineering of Aureobasidium.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"244"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11395-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aureobasidium pullulans is a yeast-like fungus known for its commercial biomanufacturing of pullulan. This study explores the genome of A. pullulans NRRL 62031, highlighting its biosynthetic potential, metabolic pathways, and physiological traits. Additionally, it demonstrates actual product formation and links molecular features to biotechnological applications. Phylogenetic analysis suggested it might be closely related to Aureobasidium melanogenum. While the functional annotation revealed a wide carbohydrate catabolism, growth evaluation demonstrated that the microbe can utilize not only saccharides but also polyols and organic acids. The extracellular cellulolytic, xylanolytic, and pectinolytic activities were indicated by the formation of visible halos on agar plates. The antiSMASH pipeline, NCBI Blastp alignment, and product qualification confirmed that A. pullulans NRRL 62031 can produce melanin, pullulan, polymalate, and polyol lipids. Moreover, yanuthone D, burnettramic acid A, choline, fructooligosaccharides, gluconic acid, and β-glucan might be synthesized by A. pullulans NRRL 62031. The results clearly show the extraordinary potential of A. pullulans NRRL 62031 as a microbial chassis for valorizing biomass residues into value-added bioproducts. The strong catabolic and anabolic capacities indicate significant promise for biotechnological applications. The results are discussed in the context of metabolic engineering of Aureobasidium.
Eng Hooi Tan, Andrea Li Ann Wong, Chuan Chien Tan, Patrick Wong, Sing Huang Tan, Li En Yvonne Ang, Siew Eng Lim, Wan Qin Chong, Jingshan Ho, Soo Chin Lee, Bee Choo Tai
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.