Shunbin Xiong, Yun Zhang, Xin Zhou, Vinod Pant, Akshita Mirani, Jovanka Gencel-Augusto, Gilda Chau, M James You, Guillermina Lozano
{"title":"Dependence on Mdm2 for Mdm4 inhibition of p53 activity.","authors":"Shunbin Xiong, Yun Zhang, Xin Zhou, Vinod Pant, Akshita Mirani, Jovanka Gencel-Augusto, Gilda Chau, M James You, Guillermina Lozano","doi":"10.1016/j.canlet.2025.217622","DOIUrl":null,"url":null,"abstract":"<p><p>Both Mdm2 and Mdm4 inhibit p53 activity by masking of its transcriptional activation domain. In addition, Mdm2 functions as an E3 ubiquitin ligase, targeting p53 for degradation. The Mdm4 amino terminus binds wild type and mutant p53 while its RING domain, which lacks E3 ligase activity, is required for heterodimerization with Mdm2. To determine how these domains of Mdm4 regulate p53, we generated mouse models with either a deletion of the Mdm4 RING domain (Mdm4<sup>ΔR</sup>) or all of Mdm4 (Mdm4<sup>─</sup>) on a hypomorphic (p53<sup>neo</sup>) background. Mdm4<sup>ΔR</sup> mice exhibited elevated p53 levels and activity, albeit to a lesser extent than mice with complete Mdm4 loss, indicating that the amino terminus of Mdm4 contributes to p53 inhibition. Moreover, in the absence of Mdm2, neither the deletion of the Mdm4 RING domain nor the complete loss of Mdm4 further increased p53 protein levels on a mutant p53 background, indicating that Mdm4 modulates Mdm2 in its regulation of p53 stability. Collectively, our findings suggest that Mdm4 contributes to p53 inhibition by modulating Mdm2 activity via both its amino terminus and RING domains.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217622"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217622","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Both Mdm2 and Mdm4 inhibit p53 activity by masking of its transcriptional activation domain. In addition, Mdm2 functions as an E3 ubiquitin ligase, targeting p53 for degradation. The Mdm4 amino terminus binds wild type and mutant p53 while its RING domain, which lacks E3 ligase activity, is required for heterodimerization with Mdm2. To determine how these domains of Mdm4 regulate p53, we generated mouse models with either a deletion of the Mdm4 RING domain (Mdm4ΔR) or all of Mdm4 (Mdm4─) on a hypomorphic (p53neo) background. Mdm4ΔR mice exhibited elevated p53 levels and activity, albeit to a lesser extent than mice with complete Mdm4 loss, indicating that the amino terminus of Mdm4 contributes to p53 inhibition. Moreover, in the absence of Mdm2, neither the deletion of the Mdm4 RING domain nor the complete loss of Mdm4 further increased p53 protein levels on a mutant p53 background, indicating that Mdm4 modulates Mdm2 in its regulation of p53 stability. Collectively, our findings suggest that Mdm4 contributes to p53 inhibition by modulating Mdm2 activity via both its amino terminus and RING domains.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.