Ji Hye Jeong , Dakyum Shin , Sang-Yeob Kim , Dong-Jun Bae , Young Hoon Sung , Eun-Young Koh , Jinju Kim , Chong Jai Kim , Jae Soon Park , Jung Kyoon Choi , Song Cheol Kim , Eunsung Jun
{"title":"Spatial distribution and activation changes of T cells in pancreatic tumors according to KRAS mutation subtype","authors":"Ji Hye Jeong , Dakyum Shin , Sang-Yeob Kim , Dong-Jun Bae , Young Hoon Sung , Eun-Young Koh , Jinju Kim , Chong Jai Kim , Jae Soon Park , Jung Kyoon Choi , Song Cheol Kim , Eunsung Jun","doi":"10.1016/j.canlet.2025.217641","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance immunotherapy efficacy in pancreatic cancer, it is crucial to characterize its immune landscape and identify key factors driving immune alterations. To achieve this, we quantitatively analyzed the immune microenvironment using multiplex immunohistochemistry, assessing the spatial relationships between immune and tumor cells to correlate with patient survival rates and oncological factors. Additionally, through Whole Exome Sequencing analysis based on public data, we explored genetic mutations that could drive these compositions. Finally, we validated T cell (Tc) migration mechanisms using patient-derived tumor organoids with induced KRAS mutation subtypes. Through this approach, we obtained the following meaningful results<strong>.</strong> First, immune cells in pancreatic cancer are denser in stromal regions than near tumor cells, with higher Tc distribution linked to increased patient survival rates. Second, the distance between tumor and Tc was within 100 μm, with higher Tc density found within 15–30 μm of the tumor cells. Third, while increasing CAF levels correspond to higher Tc density, higher ECM density tends to decrease Tc presence. Fourth, compared to KRAS G12D, KRAS G12V mutation increases various immune cells, notably Tc, which is closely linked to a dramatic rise in vascular cells. Finally, Tc migration was enhanced in tumor organoids with the G12V mutation, attributed to a reduction in the secretion of immunosuppressive cytokines. Our results indicate that KRAS mutation subtypes influence immune cell composition and function in the pancreatic cancer microenvironment, leading to varied immunotherapy responses. This underscores the need for personalized immune therapeutics and research models specific to KRAS mutations.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"618 ","pages":"Article 217641"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525002058","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance immunotherapy efficacy in pancreatic cancer, it is crucial to characterize its immune landscape and identify key factors driving immune alterations. To achieve this, we quantitatively analyzed the immune microenvironment using multiplex immunohistochemistry, assessing the spatial relationships between immune and tumor cells to correlate with patient survival rates and oncological factors. Additionally, through Whole Exome Sequencing analysis based on public data, we explored genetic mutations that could drive these compositions. Finally, we validated T cell (Tc) migration mechanisms using patient-derived tumor organoids with induced KRAS mutation subtypes. Through this approach, we obtained the following meaningful results. First, immune cells in pancreatic cancer are denser in stromal regions than near tumor cells, with higher Tc distribution linked to increased patient survival rates. Second, the distance between tumor and Tc was within 100 μm, with higher Tc density found within 15–30 μm of the tumor cells. Third, while increasing CAF levels correspond to higher Tc density, higher ECM density tends to decrease Tc presence. Fourth, compared to KRAS G12D, KRAS G12V mutation increases various immune cells, notably Tc, which is closely linked to a dramatic rise in vascular cells. Finally, Tc migration was enhanced in tumor organoids with the G12V mutation, attributed to a reduction in the secretion of immunosuppressive cytokines. Our results indicate that KRAS mutation subtypes influence immune cell composition and function in the pancreatic cancer microenvironment, leading to varied immunotherapy responses. This underscores the need for personalized immune therapeutics and research models specific to KRAS mutations.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.