Qinlei Wang , Zhaowei Sun , Jingyun Guo , Haoran Li, Jingru Zhang, Bingyuan Zhang, Bin Zhou, Yujie Feng
{"title":"Tumor-derived exosomal LINC01812 induces M2 macrophage polarization to promote perineural invasion in cholangiocarcinoma","authors":"Qinlei Wang , Zhaowei Sun , Jingyun Guo , Haoran Li, Jingru Zhang, Bingyuan Zhang, Bin Zhou, Yujie Feng","doi":"10.1016/j.canlet.2025.217596","DOIUrl":null,"url":null,"abstract":"<div><div>M2 macrophages play a critical role in the tumor microenvironment of invasive solid tumors. They are closely associated with perineural invasion (PNI) and are often linked to poor prognosis. In this context, tumor-derived exosomes serve as important mediators of intercellular communication. However, the relationship between tumor cell-induced M2 macrophages and PNI in cholangiocarcinoma remains unexplored. In this study, we utilized multiplex immunofluorescence and transcriptomic sequencing to demonstrate the upregulation of LINC01812 in cholangiocarcinoma tissues and its positive correlation with M2 macrophage infiltration. Exosomal lncRNA sequencing, exosome uptake experiments, RNA pull-down assays, and mass spectrometry analysis demonstrated that macrophages can internalize exosomal LINC01812 and promote the M2 phenotype in cholangiocarcinoma cells. Additionally, Transwell and in vitro cocultures with the dorsal root ganglia confirmed that the tumor microenvironment significantly enhances the nerve infiltration of cholangiocarcinoma cells via M2 macrophages. The findings of this study indicate that exosomes containing LINC01812 derived from cholangiocarcinoma can induce M2 macrophage polarization and facilitate nerve infiltration, thereby providing new potential therapeutic targets for managing PNI in cholangiocarcinoma.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"617 ","pages":"Article 217596"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001600","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
M2 macrophages play a critical role in the tumor microenvironment of invasive solid tumors. They are closely associated with perineural invasion (PNI) and are often linked to poor prognosis. In this context, tumor-derived exosomes serve as important mediators of intercellular communication. However, the relationship between tumor cell-induced M2 macrophages and PNI in cholangiocarcinoma remains unexplored. In this study, we utilized multiplex immunofluorescence and transcriptomic sequencing to demonstrate the upregulation of LINC01812 in cholangiocarcinoma tissues and its positive correlation with M2 macrophage infiltration. Exosomal lncRNA sequencing, exosome uptake experiments, RNA pull-down assays, and mass spectrometry analysis demonstrated that macrophages can internalize exosomal LINC01812 and promote the M2 phenotype in cholangiocarcinoma cells. Additionally, Transwell and in vitro cocultures with the dorsal root ganglia confirmed that the tumor microenvironment significantly enhances the nerve infiltration of cholangiocarcinoma cells via M2 macrophages. The findings of this study indicate that exosomes containing LINC01812 derived from cholangiocarcinoma can induce M2 macrophage polarization and facilitate nerve infiltration, thereby providing new potential therapeutic targets for managing PNI in cholangiocarcinoma.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.