Optimized Protocol For DNA Extraction from Human Whole Blood.

IF 2.5 Q3 CELL BIOLOGY Cellular Physiology and Biochemistry Pub Date : 2025-01-31 DOI:10.33594/000000756
Sylwia Brodzka, Piotr Kamiński, Jędrzej Baszyński, Sławomir Mroczkowski, Katarzyna Rektor, Emilia Stanek, Joanna Kwiecińska-Piróg, Renata Grochowalska, Natalia Kurhaluk, Halina Tkaczenko
{"title":"Optimized Protocol For DNA Extraction from Human Whole Blood.","authors":"Sylwia Brodzka, Piotr Kamiński, Jędrzej Baszyński, Sławomir Mroczkowski, Katarzyna Rektor, Emilia Stanek, Joanna Kwiecińska-Piróg, Renata Grochowalska, Natalia Kurhaluk, Halina Tkaczenko","doi":"10.33594/000000756","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>DNA isolation is the initial process in genetic research. The product is used in many PCR reactions (PCR-RFLP, Real-Time PCR, multiplex PCR). That is why it is important to optimize DNA isolation protocol to obtain a good quality of DNA. Our first attempts at isolation, conducted using Purification Kit, did not result in sufficient concentration (6.414 ng*μL<sup>-1</sup>) and purity (A-260/280) of 0.764 of isolated DNA.</p><p><strong>Methods: </strong>We used twice the recommended amount of tissue and cell lysis solution to get more effective cell lysis. We extend the time of vortexing, centrifugation and incubation at critical steps. We manipulated the speed and temperatures of centrifugation. We used cold iso-propanol to get white strands of DNA faster. When rinsing with ethanol we used cold alcohol. We tested efficiency of two methods of drying of ethanol to achieve optimal DNA pureness. We leave the isolated DNA for 20 minutes to evaporate the ethanol and then resuspend nucleic acid in TE Buffer.</p><p><strong>Results: </strong>Our modifications resulted in the improvement of isolation efficiency. After optimization we achieved DNA concentration (in range of 50-150 ng*μL<sup>-1</sup>) and purity (A 260/280) of 1.735. Similar results for DNA parameters were achieved from the whole blood frozen for 2-3 months (concentration in the range of 125.762 ng*μL<sup>-1</sup>, pureness: 1.761) and from blood frozen for 18 months (117.94 ng*μL<sup>-1</sup> and 1.7194, respectively). We performed electrophoresis after each isolation to confirm the effectiveness of optimized procedure. The refinements we used in DNA isolation are more efficient than those recommended in DNA Purification Kits.</p><p><strong>Conclusion: </strong>Our results confirm that optimized DNA protocol fulfills the conditions of good extraction technique: it is relatively fast and easy to perform yet it guarantees a high reproducibility, specificity and sensitivity. There are also no dangerous or harmful steps. Our paper demonstrates innovative and effective approach. It confirms a high effectiveness of method regardless of duration of sample freezing, as well as introduce important modifications (timing, temperature conditions, drying details, absence of K-proteinase) that make overall procedure more productive and relatively fast.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 1","pages":"47-64"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aims: DNA isolation is the initial process in genetic research. The product is used in many PCR reactions (PCR-RFLP, Real-Time PCR, multiplex PCR). That is why it is important to optimize DNA isolation protocol to obtain a good quality of DNA. Our first attempts at isolation, conducted using Purification Kit, did not result in sufficient concentration (6.414 ng*μL-1) and purity (A-260/280) of 0.764 of isolated DNA.

Methods: We used twice the recommended amount of tissue and cell lysis solution to get more effective cell lysis. We extend the time of vortexing, centrifugation and incubation at critical steps. We manipulated the speed and temperatures of centrifugation. We used cold iso-propanol to get white strands of DNA faster. When rinsing with ethanol we used cold alcohol. We tested efficiency of two methods of drying of ethanol to achieve optimal DNA pureness. We leave the isolated DNA for 20 minutes to evaporate the ethanol and then resuspend nucleic acid in TE Buffer.

Results: Our modifications resulted in the improvement of isolation efficiency. After optimization we achieved DNA concentration (in range of 50-150 ng*μL-1) and purity (A 260/280) of 1.735. Similar results for DNA parameters were achieved from the whole blood frozen for 2-3 months (concentration in the range of 125.762 ng*μL-1, pureness: 1.761) and from blood frozen for 18 months (117.94 ng*μL-1 and 1.7194, respectively). We performed electrophoresis after each isolation to confirm the effectiveness of optimized procedure. The refinements we used in DNA isolation are more efficient than those recommended in DNA Purification Kits.

Conclusion: Our results confirm that optimized DNA protocol fulfills the conditions of good extraction technique: it is relatively fast and easy to perform yet it guarantees a high reproducibility, specificity and sensitivity. There are also no dangerous or harmful steps. Our paper demonstrates innovative and effective approach. It confirms a high effectiveness of method regardless of duration of sample freezing, as well as introduce important modifications (timing, temperature conditions, drying details, absence of K-proteinase) that make overall procedure more productive and relatively fast.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
期刊最新文献
Effective Treatment of Cartilage Abnormalities in Middle-Aged Individuals (Aged 45-60): Bounding Molecular Biology with Microfracture and Hyalofast Membrane Approach Show Positive Outcomes. Synergistic Activity of Indolicidin and Tigecycline Against Multidrug-Resistant Acinetobacter Baumannii Clinical Isolates. Can Metabolic Biomarkers of Oxygen- Dependent Processes Determine Health Status of Pigeon Columba Livia F. Urbana? Optimized Protocol For DNA Extraction from Human Whole Blood. MOTS-c Impact on Muscle Cell Differentiation and Metabolism Across Fiber Types.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1