Improving the Robustness and Clinical Applicability of Automatic Respiratory Sound Classification Using Deep Learning-Based Audio Enhancement: Algorithm Development and Validation.

JMIR AI Pub Date : 2025-03-13 DOI:10.2196/67239
Jing-Tong Tzeng, Jeng-Lin Li, Huan-Yu Chen, Chu-Hsiang Huang, Chi-Hsin Chen, Cheng-Yi Fan, Edward Pei-Chuan Huang, Chi-Chun Lee
{"title":"Improving the Robustness and Clinical Applicability of Automatic Respiratory Sound Classification Using Deep Learning-Based Audio Enhancement: Algorithm Development and Validation.","authors":"Jing-Tong Tzeng, Jeng-Lin Li, Huan-Yu Chen, Chu-Hsiang Huang, Chi-Hsin Chen, Cheng-Yi Fan, Edward Pei-Chuan Huang, Chi-Chun Lee","doi":"10.2196/67239","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning techniques have shown promising results in the automatic classification of respiratory sounds. However, accurately distinguishing these sounds in real-world noisy conditions poses challenges for clinical deployment. In addition, predicting signals with only background noise could undermine user trust in the system.</p><p><strong>Objective: </strong>This study aimed to investigate the feasibility and effectiveness of incorporating a deep learning-based audio enhancement preprocessing step into automatic respiratory sound classification systems to improve robustness and clinical applicability.</p><p><strong>Methods: </strong>We conducted extensive experiments using various audio enhancement model architectures, including time-domain and time-frequency-domain approaches, in combination with multiple classification models to evaluate the effectiveness of the audio enhancement module in an automatic respiratory sound classification system. The classification performance was compared against the baseline noise injection data augmentation method. These experiments were carried out on 2 datasets: the International Conference in Biomedical and Health Informatics (ICBHI) respiratory sound dataset, which contains 5.5 hours of recordings, and the Formosa Archive of Breath Sound dataset, which comprises 14.6 hours of recordings. Furthermore, a physician validation study involving 7 senior physicians was conducted to assess the clinical utility of the system.</p><p><strong>Results: </strong>The integration of the audio enhancement module resulted in a 21.88% increase with P<.001 in the ICBHI classification score on the ICBHI dataset and a 4.1% improvement with P<.001 on the Formosa Archive of Breath Sound dataset in multi-class noisy scenarios. Quantitative analysis from the physician validation study revealed improvements in efficiency, diagnostic confidence, and trust during model-assisted diagnosis, with workflows that integrated enhanced audio leading to an 11.61% increase in diagnostic sensitivity and facilitating high-confidence diagnoses.</p><p><strong>Conclusions: </strong>Incorporating an audio enhancement algorithm significantly enhances the robustness and clinical utility of automatic respiratory sound classification systems, improving performance in noisy environments and fostering greater trust among medical professionals.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"4 ","pages":"e67239"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/67239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Deep learning techniques have shown promising results in the automatic classification of respiratory sounds. However, accurately distinguishing these sounds in real-world noisy conditions poses challenges for clinical deployment. In addition, predicting signals with only background noise could undermine user trust in the system.

Objective: This study aimed to investigate the feasibility and effectiveness of incorporating a deep learning-based audio enhancement preprocessing step into automatic respiratory sound classification systems to improve robustness and clinical applicability.

Methods: We conducted extensive experiments using various audio enhancement model architectures, including time-domain and time-frequency-domain approaches, in combination with multiple classification models to evaluate the effectiveness of the audio enhancement module in an automatic respiratory sound classification system. The classification performance was compared against the baseline noise injection data augmentation method. These experiments were carried out on 2 datasets: the International Conference in Biomedical and Health Informatics (ICBHI) respiratory sound dataset, which contains 5.5 hours of recordings, and the Formosa Archive of Breath Sound dataset, which comprises 14.6 hours of recordings. Furthermore, a physician validation study involving 7 senior physicians was conducted to assess the clinical utility of the system.

Results: The integration of the audio enhancement module resulted in a 21.88% increase with P<.001 in the ICBHI classification score on the ICBHI dataset and a 4.1% improvement with P<.001 on the Formosa Archive of Breath Sound dataset in multi-class noisy scenarios. Quantitative analysis from the physician validation study revealed improvements in efficiency, diagnostic confidence, and trust during model-assisted diagnosis, with workflows that integrated enhanced audio leading to an 11.61% increase in diagnostic sensitivity and facilitating high-confidence diagnoses.

Conclusions: Incorporating an audio enhancement algorithm significantly enhances the robustness and clinical utility of automatic respiratory sound classification systems, improving performance in noisy environments and fostering greater trust among medical professionals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utility-based Analysis of Statistical Approaches and Deep Learning Models for Synthetic Data Generation With Focus on Correlation Structures: Algorithm Development and Validation. Creation of Scientific Response Documents for Addressing Product Medical Information Inquiries: Mixed Method Approach Using Artificial Intelligence. Improving the Robustness and Clinical Applicability of Automatic Respiratory Sound Classification Using Deep Learning-Based Audio Enhancement: Algorithm Development and Validation. Studying the Potential Effects of Artificial Intelligence on Physician Autonomy: Scoping Review. GPT-4 as a Clinical Decision Support Tool in Ischemic Stroke Management: Evaluation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1